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ABSTRACT
Indoor mobility analyses are increasingly interesting due to the
rapid growth of raw indoor positioning data. However, high-level
analyses are still in urgent need of a concise but semantics-oriented
representation of the mobility implied by the raw data. This work
studies the problem of translating raw indoor positioning data into
mobility semantics that describes a moving object’s mobility event
(What) at someplace (Where) at some time (When). The problem
is non-trivial mainly because of the inherent errors in the uncertain,
discrete raw data. To solve the problem, we propose a three-layer
framework in which each layer contains a set of novel techniques.
In the cleaning layer, we design a cleaning method that eliminates
indoor positioning data errors by considering indoor mobility con-
straints. In the annotation layer, we propose a split-and-match ap-
proach to annotate mobility semantics on the cleaned data. It in-
cludes a density based method that splits positioning sequences
according to underlying mobility events and a semantic matching
method that makes proper annotations for split snippets. In the
complementing layer, we devise an inference method that makes
uses of indoor topology and mobility semantics already obtained to
recover the missing mobility semantics that are not observed in the
raw data. The extensive experiments demonstrate that our solution
is efficient and effective on both real and synthetic data. For typical
queries, our solution’s resultant mobility semantics lead to more
precise answers but incur less execution time than alternatives.
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1. INTRODUCTION
According to multiple studies [21, 25], people spend about 90%

of their daily lives indoors. Human movements indoors are increas-
ingly captured in raw positioning data due to the recent advance in
indoor positioning [18] and high penetration of smartphones [2].
Analyzing indoor positioning data can reveal interesting findings
otherwise hard to obtain, e.g., the popular indoor locations [30, 28]
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or hot routes [12, 36], frequent or exceptional indoor patterns [26,
20, 39], and insights for in-store marketing [13, 19].

One class of indoor mobility analysis concerns semantics and ask
questions like “Which combination of shops is the most frequently
visited by the shoppers in a mall?” or “List out the staff that meet
at the security-sensitive regions after work hours and stay there for
more than an hour.” In order to answer such questions, we need to
extract mobility related semantics from indoor positioning data.

In this study, we use a type of data generated by indoor position-
ing systems based on wireless technology (e.g., Wi-Fi) [17, 18]. In
particular, the data for one person (or moving object) contains a set
of raw positioning records that are uncertain and discrete in nature.
Each raw record (o, x, y, f, t) means the object o is estimated to be
at point (x, y) on floor f at time t. As the raw data does not give the
needed semantics explicitly, we need to translate the raw data into
an explicit, informative data representation. Inspired by semantic
trajectories [35, 46], we use indoor mobility semantics exemplified
as follows:
o1 : (stay,Nike, 1:02pm-1:18pm) � (pass-by,Adidas, 1:19pm-1:20pm)

� (stay,Cashier, 1:21pm-1:24pm)

Specifically, object o1’s movements are represented by a line of
structured mobility semantics, which includes a mobility event an-
notation (a stay or pass-by event), a spatial annotation (a semantic
region like Nike store), and a temporal annotation (a time period).
We use m-semantics 1 to refer to such mobility semantics. As the
annotations in m-semantics are related to indoor semantic regions
and mobility events, m-semantics are considerably more compre-
hensible and useful for relevant application needs than the raw data.

However, translating raw indoor positioning data into m-semantics
is still a challenging task mainly due to three reasons. First, the raw
data obtained by wireless technology is very dirty because of unpre-
dictable interferences of wireless signals [17, 18], especially when
the infrastructure uses ordinary sensors, e.g., Wi-Fi access points,
for network access [13, 19]. Figure 1 depicts some Wi-Fi based
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Figure 1: Real-world Indoor Positioning Data Errors

positioning data obtained in a shopping mall in Hangzhou, China.
Referring to Figure 1(a), for a device sampled every 10 seconds,
1Here, ‘m’ stands for ‘mobility’.
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the average positioning error (APE) calculated every 10 minutes
fluctuates significantly. Also, there are many false floor values re-
ported for two example devices d1 and d2 as shown in Figure 1(b).
Such data errors must be handled carefully before m-semantics can
be produced. Second, indoor space accommodates multiple enti-
ties like rooms, doors, and barriers (e.g., walls), which altogether
makes the object movements complex and hard to annotate. The
situation becomes even worse when data errors are involved. Third,
indoor positioning data is always discrete as mobile devices tend to
turn off wireless signals for energy-saving needs [19]. It is non-
trivial to obtain a complete sequence of m-semantics from discrete
positioning data that at first glance suggests many possibilities.

EXAMPLE 1. Referring to the floorplan in Figure 2, some se-
mantic regions are pre-defined such as S1 and hw-f. We illustrate
an object’s raw positioning data on the floorplan. Note that the lo-
cation estimates represented as geometric points (x, y) in a plane
are barely informative as no semantics can be recognized without
the underlying floorplan provided. When interpreting the position-
ing data, due to the inherent errors and the layout of indoor regions,
it is hard to make spatial annotation (i.e., semantic region) for the
object during the time period 9:05am-9:15am. Also, it is hard to
construct m-semantics between the two presences in hallways hw-b
at 9:16am and hw-d at 9:19am as no straightforward information
is available by the discrete indoor positioning records.

S2

hw-b

9:05am-9:15am

9:20am-9:42am
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hw-d

location 

estimate
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Figure 2: Example of Indoor Floorplan
To address the aforementioned challenges, we propose a three-

layer framework for constructing m-semantics from the raw indoor
positioning data. In the framework, the ultimate task is decom-
posed and accomplished by three functional layers in a chained
manner. Each layer is equipped with corresponding applicable tech-
niques to facilitate the data processing. The cleaning layer consid-
ers the characteristics of indoor mobility constraints and cleans the
raw positioning sequences. Subsequently, in the annotation layer,
each positioning sequence is split into a number of snippets ac-
cording to the underlying mobility event. The snippets are then
translated into m-semantics by semantic matching. Last, in the
complementing layer, in order to recover the missing m-semantics
in an m-semantics sequence, knowledge about indoor mobility is
constructed from the m-semantics already obtained, and an infer-
ence based method is used to infer the missing m-semantics on the
top of the constructed knowledge. Consequently, each object’s m-
semantics sequence is complemented.

To sum up, we make the following contributions in this work.
• We formulate the problem of translating raw indoor positioning

data into m-semantics and propose a three-layer framework to
solve the problem (Section 2).
• We design a cleaning method that eliminates indoor position-

ing data errors based on indoor mobility constraints (Section 3).
• We devise a split-and-match approach to annotate m-semantics

on the cleaned data. It includes a density based method that
splits the positioning sequence according to the underlying mo-
bility event and a semantic matching method that makes proper
annotations for the split snippets (Section 4).

• We propose an inference method to recover the missing m-
semantics with the help of knowledge about indoor mobility,
indoor topology and m-semantics already obtained (Section 5).
• We conduct extensive experiments on both real and synthetic

data to evaluate the efficiency and effectiveness of our propos-
als. (Section 6).

In addition, Section 7 reviews the related work; Section 8 concludes
the paper and discusses future work.

2. PRELIMINARIES
Table 1 lists the notations used throughout this paper.

Symbol Meaning
o an indoor moving object
θ = (o, l, t) object o’s positioning record
Θo object o’s positioning sequence
r ∈ R an indoor (semantic) region
τ = [ts, te] a time period
δ ∈ {stay, pass-by} a generic mobility event
λ = (π, τ, δ) an indoor mobility semantics
Λo = 〈λi, . . . , λj〉 object o’s ms-sequence
PT = 〈ri, . . . , rj〉 region pattern of an ms-sequence
φ = rs � . . . � re an indoor candidate path
distI(ls, le) Minimum Indoor Walking Distance
distgr(rs, re) Guaranteed Reaching Distance

Table 1: Notations

2.1 Raw Indoor Positioning Data
In our setting, an indoor positioning system aperiodically reports

a record θ = (o, l, t) for an object o, where l is a location estimate

o l(x,y, f) t
o1 (2.5, 10.7, 1) t1
o2 (5.1, 38.5, 4) t1
o1 (2.3, 11.2, 2) t4

Table 2: Example of IPT

and t is a timestamp, meaning
that object o’s location is esti-
mated to be l at time t. In most
indoor positioning systems [11,
17, 27], θ.l is represented as a
triplet (x, y, f), i.e., a 2D point
(x, y) ∈ R2 on a floor f ∈ N.
The indoor positioning records are stored in an indoor positioning
table (IPT), as exemplified in Table 2.

We define indoor positioning sequence (p-sequence) as follows.

DEFINITION 1 (INDOOR POSITIONING SEQUENCE). Given
an IPT and a time period T = [ts, te], an object o’s indoor posi-
tioning sequence over T is a complete time-ordered sequence Θo,T
of indoor positioning records of o. At most one positioning record
(oi, li, ti) can be found in Θo,T for a unique timestamp ti.

Referring to Table 2, object o1’s p-sequence over T = [t1, t4] is
〈(o1, (2.5, 10.7, 1), t1), (o1, (2.3, 11.2, 2), t4)〉. When the context
is clear, we use Θo to denote object o’s p-sequence.

2.2 Problem Statement
We formally give the definition of mobility semantics.

DEFINITION 2 (MOBILITY SEMANTICS). Corresponding to
a segment of p-sequence Θ∗o ⊆ Θo of an indoor object o, a mobility
semantics (m-semantics for short) is a triplet λ(π, τ, δ), where the
spatial annotation π is an indoor region, the temporal annotation
τ is a time period [ti, tj ] and the event annotation δ is a generic
mobility event given by an identification function E(Θ∗o).

The indoor regions serving as the spatial annotations are usually
pre-defined with particular semantics by data analysts. For exam-
ple, an indoor region can be a cashier or a shop in a mall. Essen-
tially, an indoor space can be naturally divided into a number of
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indoor partitions like rooms and hallways by the walls and doors.
For simplicity, we assume that each indoor region is composed of
one or more such indoor partitions 2. When the context is clear, we
use regions to refer to indoor regions.

The mobility events refer to some interesting movement patterns.
Exisiting patterns like stop/move [46] have been used to describe
the movements in geographic space, e.g., a car moves on a road or
a person stops at a park. Compared to the geographic space, an in-
door space is composed of much smaller and denser indoor regions
that fullfil different purposes (e.g., a carteen vs. a meeting room).
Using stop/move does not well reflect the underlying purpose of
the movements in or between the semantic-rich indoor regions. To
give more informative semantics, we introduce two generic indoor
mobility events stay and pass-by. In particular, a stay indicates that
an indoor object has been staying in a region for a time period for
a particular purpose that is fulfilled in that region. E.g., a stay can
be that a user spent half hour in a shoe shop, selecting and buying
a pair of new shoes. In contrast, a pass-by tells that an object has
passed through a region but there are no particular purposes asso-
ciated with that pass. E.g., a user might pass by a number of other
shops before she reaches the shop where she bought shoes. The dis-
tinction between stay and pass-by is very useful in pertinent indoor
scenarios. For example, security managers may only have interest
in the people staying in a certain indoor region, while the mall man-
agers may want to know both numbers of staying and passing-by
customers when analyzing advertising effects in a region.

As to be introduced in Section 4.2.1, we design an event identi-
fication function (E-function for short) to differentiate a stay and a
pass-by. The E-function is a learning-based model and supervised
with the spatiotemporal features extracted from the user-recognized
mobility events. An m-semantics annotated with a stay (pass-by)
event is a stay (pass-by) m-semantics and denoted by λq (λ�), and
its associated region is a stay (pass-by) region denoted as rq (r�).

Next, we define m-semantics sequence (ms-sequence).

DEFINITION 3 (M-SEMANTICS SEQUENCE). Given an indoor
object o, its m-semantics sequence over a time period T is a time-
ordered sequence Λo,T of o’s m-semantics. For any m-semantics
λi, λj ∈ Λo,T , λi.τ ⊆ T , λj .τ ⊆ T , λj .τ ∩ λj .τ = ∅.

We formulate our research problem as follows.

PROBLEM 1 (INDOOR M-SEMANTICS CONSTRUCTION).
Given an IPT, a time period T , and a set R of indoor regions, for
each object oi in IPT, the indoor m-semantics construction trans-
lates oi’s p-sequence Θoi,T = 〈θi1, . . . , θin〉 into an ms-sequence
Λoi,T = 〈λi1, . . . , λim〉.

Constructing ms-sequences provides an intuitive, concise way to
understand an indoor moving object’s general behaviors. It serves
as the foundation of multiple high-level mobility analyses. How-
ever, the major challenge to the construction is that the input data
is of very low quality and only provides very limited information.
To this end, we propose a three-layer framework that progressively
improves the data quality and constructs the m-semantics.

2.3 Framework Overview
As illustrated in Figure 3, our framework takes each object’s p-

sequence from the IPT as input and exports the corresponding ms-
sequence. The data is processed through three functional layers.
Cleaning Layer handles the data errors in the p-sequence from
each individual object. It conducts the data cleaning by considering
the indoor mobility constraints captured in a distance-aware model.
2Assuming regions do not overlap, our techniques allow an indoor
region to involve (parts of) an indoor partition.
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Figure 3: The Construction Framework

Annotation Layer first uses a density based method to split each p-
sequence into a number of snippets, and then translates each snippet
into a number of m-semantics by a semantic matching based on an
E-function and a semantic region graph.
Complementing Layer recovers the missing m-semantics for each
original ms-sequence from the annotation layer. By making use
of all the m-semantics already annotated, the mobility knowledge
is obtained by a knowledge construction. Subsequently, each ms-
sequence is complemented with a number of missing m-semantics
by using an m-semantics inference with the mobility knowledge.

3. RAW POSITIONING DATA CLEANING
As shown in Figure 1, raw indoor positioning data contains in-

herent errors due to the limitations of wireless based indoor posi-
tioning [18]. Typical errors are as follows.
1) Random errors are the small distortions from the true locations.

They are caused by the imprecise measurement of wireless sig-
nals, which is easily influenced by factors such as temperature,
humidity, and window opening or closing [27].

2) Location outliers are the significant deviations from the true lo-
cations. They occur when a mobile client suddenly fails to cap-
ture the signals from nearby transmitters. The location outliers
discussed here are within the range of a floor.

3) False floor values are usually seen in multi-floor positioning
systems. They occur in a case where a mobile client receives
stronger signals from the transmitters in other floors.

These data errors impose serious problems on the subsequent
processing of indoor m-semantics construction. It is necessary to
identify and repair them to reduce their negative impacts.

Generally speaking, indoor object movements should comply
with relevant mobility constraints. For example, moving objects
(usually people) cannot walk too fast indoors—a significant shift
in the positioning data within a short time interval usually means a
location outlier or a false floor value. Also, objects can move be-
tween indoor partitions only through doors or the like. Considering
the moving speed between two positioning locations under indoor
topology, we are able to identify a part of random errors that jump
to other indoor partitions. We give an example in Figure 4. Suppose
that an object o’s p-sequence is 〈(o, l1, t1), (o, l2, t2), (o, l3, t3)〉,
and l1 at time t1 is assumed to be valid. Given the maximum mov-
ing speed Vm and the specific indoor topology, o’s position at time
t2 can only be inside the shaded part of the circle centered at l1
with a radius Vm · (t2 − t1). As o’s location estimate l2 is outside
the shaded part at time t2, l2 is an error.

When computing the object moving speed between two posi-
tioning locations, we use the indoor distance-aware model [29]
that supports to compute the minimum indoor walking distance
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Figure 4: Example of Cleaning Raw Indoor Positioning Data

(MIWD) between two indoor locations. In Figure 4, the MIWD
from location l1 to location l3, denoted as distI(l1, l3), is com-
puted as the sum of two Euclidean distances |l1, d1| and |d1, l3|,
where d1 is the door through which an object can reach l3 from l1.

Based on the MIWD that integrates both topological and geo-
metrical mobility constraints, we identify the positioning data error
by checking the indoor object speed. Formally, given a maximum
speed Vm, for any two consecutive positioning records θi, θi+1,
their in-between indoor speed v =

distI (θi.l,θi+1.l)

θi+1.t−θi.t should not ex-
ceed Vm. In other words, assuming we check a p-sequence in a for-
ward direction, a record θi that violates the aforementioned speed
constraint should be invalid if its preceding record θi−1 has already
been determined as valid.

When an invalid record θi is identified, the error in its location
estimate may occur at the floor part (i.e., false floor value) and/or
the 2D point part (i.e., location outlier or random error). We re-
pair it in two steps. The first step repairs a potential mistake in
θi’s floor value. If θi’s floor value is different from the previous
valid record θp’s (p ≤ i − 1), we modify θi’s to the same as θp’s.
Such modification comes into effect if the violation of speed con-
straint no longer occurs; otherwise, the underlying data error is
still in the 2D point part. The second step repairs the wrong lo-
cation estimate by interpolating a new one. To this end, for the
current record θi, we find the previous and next valid positioning
record as θp and θs (s ≥ i + 1), respectively. As no informa-
tion is provided about how the corresponding object has moved
between the two valid records, we assume that the object moved
along the shortest indoor path between locations θp.l and θs.l at
a constant speed. This assumption simplifies the interpolation but
still complies with the indoor mobility constraints. Consequently,
given the timestamp θi.t, the corresponding new location estimate
is interpolated as a location l on the shortest indoor path from θp.l

to θs.l such that dist I (θp.l, l) =
θi.t−θp.t
θs.t−θp.t · dist I (θp.l, θs.l). Also

referring to Figure 4, location estimate l2 (l3) is determined as in-
valid (valid) based on the speed checking. Moreover, we should
further repair l2 by the second step as the error is in its 2D point
part. Precisely, the possible position at time t2 should be inside the
blue shaded intersection provided that l1 and l3 have been deter-
mined as valid. For simplicity, we interpolate the new estimate l′2
for o at time t2 on the shortest indoor path from l1 and l3 having
dist I (l1, l

′
2)/dist I (l′2, l3) = (t2 − t1)/(t3 − t2). It can be proved

that l′2 must be inside the blue shaded part. We omit the details due
to the page limit.

The overall cleaning is formalized in Algorithm 1. For simplic-
ity, we assume that the first element in the p-sequence is valid. Nev-
ertheless, the algorithm can start with any valid positioning record
that results from a global checking on the p-sequence.

4. MOBILITY SEMANTICS ANNOTATION
In this section, we use a split-and-match approach to annotate

the m-semantics on a cleaned p-sequence. First, we split the p-
sequence into a number of snippets, each corresponding to an un-
derlying mobility event (i.e., stay or pass-by introduced in Sec-
tion 2.2). Next, in each split snippet, we match its m-semantics

Algorithm 1: Mobility Constraint based Cleaning
Input: p-sequence Θo, maximum moving speed Vm.
Output: cleaned p-sequence Θ′o.

1 time-ordered sequenceAθ ←− 〈〉
2 current valid positioning record θ̂ ←− head(Θo)
3 for each positioning record θ ∈ Θo \ head(Θo) do
4 valid ←− True
5 if ValidSpeed(θ̂, θ) is False then
6 (x, y, f)←− θ.l; (x̂, ŷ, f̂)←− θ̂.l; θ.l←− (x, y, f̂)

7 if ValidSpeed(θ̂, θ) is False then
8 add θ toAθ ; valid ←− False

9 if valid then
10 A′θ ←− Interpolation(θ̂,Aθ , θ)
11 add all positioning records inA′θ to Θ′o
12 Aθ ←− 〈〉; θ̂ ←− θ

13 add θ̂ to Θ′o
14 return Θ′o
15 Function ValidSpeed(θ̂, θ)
16 v←− distI (θ̂.l, θ.l) / (θ.t - θ̂.t) // compute the MIWD
17 if v ≤ Vm then return True else return False

18 Function Interpolation(θp,Aθ , θs)
19 A′θ ←− 〈〉; add θp toA′θ
20 compute a shortest indoor path pa from θp.l to θs.l
21 for each positioning record θ′ ∈ Aθ do
22 find a location l on pa having

distI (θp.l, l) =
θ′.t−θp.t
θs.t−θp.t · distI (θp.l, θs.l)

23 θ′.l←− l; add θ′ toA′θ
24 returnA′θ

by making the three annotations (see Definition 2). The overall
process is formalized in Algorithm 2. We give the density based
splitting method (called in line 2) in Section 4.1, and elaborate on
the semantic matching method (called in line 5) in Section 4.2.

Algorithm 2: Split-and-Match Annotation
Input: p-sequence Θo, event identification function E , semantic

region graph GR.
Output: time-ordered sequence of m-semantics Λo.

1 time-ordered sequence Λo ←− 〈〉
2 Asnpt ←− DensityBasedSplitting(Θo)
3 for each snippet Θ∗o inAsnpt do
4 Λ∗o ←− SemanticMatching(Θ∗o , E , GR)
5 Λo ←− Λo ∪ Λ∗o
6 return Λo

4.1 Density Based Splitting
As an object’s underlying mobility events are a sequence of mix-

ing stay or pass-by, a natural splitting way is to divide the p-sequence
into periods of time when the object is considered as relatively sta-
tionary (i.e., stay) and periods when the object is moving (i.e., pass-
by). The SMoT method [4] for GPS data partitions the GPS se-
quence based on the instant speed between two consecutive records.
Given a speed threshold ψ, the period in which the instant speed
is lower than ψ is considered as a stay event. In contrast, the
lasting period with instant speeds greater than ψ is regarded as a
pass-by event. However, SMoT is insufficient to process indoor p-
sequences. On the one hand, indoor movements are relatively slow,
making it hard to decide a suitableψ to distinguish stay and pass-by
events. On the other hand, indoor positioning data usually features
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a low sampling rate. As a result, the instant speed computed for
two consecutive records cannot reflect the underlying movement 3.

Despite the speed information, the positioning records observed
from a stay event always have both their location estimates and
timestamps packed together. Inspired by this, we propose a density
based clustering method to find a number of clusters and split the
p-sequence based on these clusters. In particular, the positioning
records contained in a cluster form a dense snippet, and those con-
secutive records between two clusters form a non-dense snippet.
ST-DBSCAN [8] is a competent algorithm to cluster data instances
according to spatial and temporal attributes. It requires three pa-
rameters: 1) εs is a distance threshold for spatial attributes; 2) εt
is a distance threshold for temporal attributes; 3) ptm is a number
threshold. A cluster is formed only if it contains at least ptm data
instances and any instance in it is within the spatial distance εs and
also within the temporal distance εt to another instance in it.

To enable the density based splitting on p-sequence, we extend
ST-DBSCAN in three aspects. First, we introduce the MIWD as the
distance metric for spatial attributes with respect to indoor topol-
ogy. Second, we build the parameter ptm adaptively rather than us-
ing a constant value. In particular, ptm at time ti is associated with
the local sampling rate within the time window [ti − εt, ti + εt]. If
the local sampling rate is currently low, i.e., only a few positioning
records were observed within the time window, we use a small ptm.
In contrast, a large ptm is used when the local sampling rate is high.
This way makes it flexible to form clusters in the context of dynam-
ically changing sampling rates. Third, we introduce two parame-
ters, namely tolerate time span ∆t and tolerate spatial distance ∆s,
to avoid small, fragmentary dense snippets to be formed. Formally,
any two dense snippets 〈θi, . . . , θj〉 and 〈θk, . . . , θl〉 are merged if
1) θk.t−θj .t ≤ ∆t, and 2) ∃s ∈ [i, j], ∃t ∈ [k, l], dist I (θs.l, θt.l)
≤ ∆s. The pseudo codes of the procedure are given in Algorithm
4 in Appendix A.1 4.

EXAMPLE 2. Referring to the splitting in Figure 5, the posi-
tioning records in a cluster formed within the time period 9:05am-
9:15am are captured as a dense snippet D1. Also, three cap-
tured dense snippets within 9:20am-9:42am are merged together
according to the condition defined on ∆s and ∆t, resulting in an-
other dense snippet D3. Between D1 and D3, there are two non-
clustered records within 9:16am-9:19am; they form a non-dense
snippet D2. As a result, the p-sequence is split into three parts.

dense 

snippet D1

non-dense

snippet D2

(merged) dense snippet D3

9:05am 9:42am

distI≤Δs time span≤Δt 

9:15am 9:20am

9:16am-9:19am

records in a cluster record between clustersrecords in a cluster record between clusters

Figure 5: Example of Density based Splitting on a P-sequence
The density information provides a good reference for splitting a

p-sequence. However, it is not sufficient to directly regard a dense
snippet as a stay and a non-dense one as a pass-by. Suppose that an
object moves steadily and reports its location at a high frequency.
Although the reported locations (and timestamps) can be close to
each other and satisfy the clustering conditions, it would be wrong
to consider the object is staying in one single place. To verify if
3Our cleaning method is not affected by this case since it only iden-
tifies a part of distinct data errors that violate the speed constraints.
4The appendices are available at https://goo.gl/zzriSD.

a snippet corresponds to true stay event, more information, e.g.,
total travel distance and location estimate variance, needs to be ex-
tracted from its containing positioning records and be checked fur-
ther. To this end, we introduce an event identification technique in
Section 4.2.1.

4.2 Semantic Matching

4.2.1 Event Identification Function
To determine the underlying mobility event (i.e., stay or pass-by)

associated with a snippet, we design an event identification function
(E-function) based on a supervised learning model. In particular,
each snippet (i.e., a segment of raw positioning records) is first rep-
resented as a mobility feature vector. Features are extracted by
considering the following aspects.
• Dense Level. As the positioning records of stay events usually

fall in the formed clusters, it is useful to indicate whether a snip-
pet is dense or not.
• Variance of Location Estimates. We consider the variance of all

associated location estimates as it is usually very small in stay
events but relatively large in pass-by events.
• Sampling Conditions. The record number and sampling rate in

the snippet are calculated as the indoor positioning data is usu-
ally sparser when the object (wireless device) is moving.
• Covering Range. The geometric shape (i.e., convex hull or its

simplified minimum boundary rectangle) that covers all location
estimates of the snippet, along with its area and centroid.
• Overlapping Regions. The IDs of the indoor regions that cover

or intersect with the covering range, along with each such re-
gion’s relevant record number (only the top-n regions are used).
• Walking Distance. The sum and average of the MIWDs between

every two consecutive location estimates.
• Walking Speed. The maximum, minimum and average of the

instant speeds between every two consecutive records.
• Number of Turns. Studies reveal that people only make a very

small number of turns when they are walking indoors [36]. Thus,
the ratio between the number of turns and walking distance is
considered in order to identify the pass-by events.
Next, a logistic regression model [3] is employed to classify

the stop and pass-by events. To train the model, a feature set is
extracted from the snippets labeled with stop or pass-by. A co-
training method [9] is introduced to iteratively construct additional
labeled training data when only small amounts of labeled data are
available. We omit the low-level details due to the page limit.

Consequently, given a snippet Θ∗o, its mobility event returned by
E(Θ∗o) corresponds to a label predicted by the classification model,
either a stop or a pass-by. Once the mobility event is determined,
in Section 4.2.2 we determine the annotations for stay and pass-by
m-semantics, especially the spatial annotation.

4.2.2 Determining Annotations
For a snippet Θ∗o that has E(Θ∗o) = stay, a stay m-semantics is

generated with the temporal annotation made as τ = [head(Θ∗o).t,
tail(Θ∗o).t]. In contrast, Θ∗o should be matched to one or more
pass-by m-semantics as the corresponding object may move through
different regions. In such a case, each positioning record θ ∈ Θ∗o
is mapped to a pass-by m-semantics with its temporal annotation
made as τ = [θ.t, θ.t].

Next, we need to make the spatial annotations for the aforemen-
tioned stay or pass-by m-semantics. In the following, we intro-
duce a semantic region graph GR that facilitates accessing a set
R of indoor regions specified by user semantics (see Section 2.2).
Specifically, GR is a labeled, directed graph represented in a 5-
tuple (V,E,Gdist ,R2P ,P2R):
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1) Each vertex v ∈ V is an indoor region r ∈ R.
2) E is the edge set {〈vi, vj ,R〉 | vi, vj ∈ V }. Each directed edge

gives the guaranteed reaching distance (GRD) from an indoor
region vi to another directly connected 5 indoor region vj .

3) Gdist is the associated distance-aware model [29] that involves
with indoor entities like doors and partitions (see Section 3).

4) R2P : R → 2P maps an indoor region (vertex) to the set of
indoor partitions in Gdist it contains.

5) P2R : P → R maps an indoor partition in Gdist to the indoor
region that covers it.

Given two indoor regions ri, rj and rj’s enterable door set 6

P2D=(R2P(rj)), the guaranteed reaching distance (GRD) from
ri to rj is defined as

distgr (ri, rj) = max
l∈ri,d∈P2D=(R2P(rj))

distI(l, d) (1)

hw-b

8m

5.5m

l

l'
d1

S1 hw-a

Figure 6: GRD Example

Generally, the GRD from ri
to rj is the walking distance an
indoor object need to reach rj
from a farthest position in ri. In
other words, any object currently
in ri can reach rj within the dis-
tance distgr (ri, rj). Note that
distgr (ri, rj) 6= distgr (rj , ri). Referring to Figure 6, regions
S1 and hw-b are directly connected, while S1 and hw-a are not
as their in-between walking path must go through another region
hw-b. Suppose that l ∈ S1 is the farthest position from the en-
terable door d1 of hw-b. Thus, GRD from S1 to hw-b equals
to distI(l, d1) = 8m. In contrast, GRD from hw-b to S1 is
distI(l

′, d1) = 5.5m where l′ ∈ hw-b is the farthest position from
the enterable door d1 of S1. The two GRDs indicate that it usually
costs more time to walk out from a larger region like S1 than from
a smaller one like hw-b. This property of GRDs can be used to
allocate the time periods for the regions that have been inferred in
recovering the missing m-semantics. The details are to be given in
Section 5.2.2.

Figure 7 gives the graph GR corresponding to Figure 2. By us-
ing the R2P and P2R mappings, a region hw-f is mapped to two
partitions it contains, and a partition p13 is mapped to its covering
region hw-e. Also, it can be seen that an object currently in S2 can
reach hw-c within a distance distgr (S2, hw-c) = 9.5m.

... ...

hw-e p13

hw-f { p9 ,p12 } 

p11

region partition

mappings

... ...

p3

S1 hw-b
8m

5.5m

hw-a

4.5m
4.5m

S2 hw-c
9.5m

5.5m

4.5m
4.5m

hw-f
5.5m

9m

S3
5.5m

5.5m

hw-e
5.5m

4m

7m
3.5m

S4
5.5m

5.5m

hw-g

hw-d

4.5m

8m

S5
12.5m

13m

7.5m

3.5m

12.5m

3.5m4.5m

12m

Figure 7: Example of Semantic Region Graph GR

To speed up the spatial searching that involves the geometric lo-
cation estimates and indoor regions, we index the regions’ associ-
ated partitions in Gdist by an R-tree. When a given location es-
timate’s intersected partition is found via the R-tree, the relevant
covering region can be obtained via the mappings defined in GR.
Note that these mappings allow users to specify the indoor regions
without getting to the underlying spatial searching conducted on
5Two regions are directly connected if an object can move from
one to the other without getting into a third region.
6In the distance-aware model [29], the mapping P2D= gives the
enterable doors for a given indoor partition.

the indoor partitions level. Consequently, we can use GR to find
the best-matched spatial annotation for an m-semantics according
to its corresponding positioning record(s).

We differentiate the spatial annotation matching for pass-by and
stay m-semantics. For a pass-by semantics and its corresponding
positioning record θ, we simply consider the indoor region that
contains θ.l as the spatial annotation. The consecutive pass-by m-
semantics that are matched with the same spatial annotation should
be merged together such that their time periods are combined. This
helps reduce possible redundancy in the semantics.

The matching for stay m-semantics is more complex as it in-
volves multiple location estimates. The traditional methods use the
centroid of location estimates or a voting mechanism to decide the
region where the object has been staying. Such methods assume
each location estimate is independently observed and has the same
importance to determine the underlying stay position of the object.

Actually, an object staying in a place usually incurs very small
displacements between its consecutive location estimates. If an es-
timate is fairly far away from its neighboring estimates, it should
be affected by the positioning random errors and thus is less reli-
able. Motivated as such, we propose a concept of location estimate
confidence that gives different weights to the location estimates in
determining the object’s stay position.

DEFINITION 4 (LOCATION ESTIMATE CONFIDENCE).
Given a snippet 〈θs, . . . , θe〉 associated with a stay event, the con-
fidence of a location estimate θi.l (s ≤ i ≤ e) is defined as

conf (i) =
(
∑
θj∈N (i) dist I (θi.l, θj .l)

|N (i)|
)−1

/ Z (2)

where N (i) is the set of θi’s k nearest neighbor location estimates
from other positioning records in the snippet and Z is a normaliza-
tion parameter making the maximum confidence be 1.

In the definition, we evaluate each estimate’s confidence by mak-
ing use of its average MIWDs to the neighboring estimates. En-
abled by the evaluated confidence, we compute each estimate θi.l’s
importance as ω(i) = conf (i)∑e

j=s conf (j)
and infer the underlying stay

position as l̂ =
∑e
i=s ω

(i) · θi.l. As a result, the spatial annotation
for a stay m-semantics is made as a region r ∈ R that contains l̂.

The whole procedure of semantic matching is formalized in Al-
gorithm 5 in Appendix A.2.

EXAMPLE 3. Referring to Figure 5, suppose that the split snip-
pets D1, D2 and D3 have been determined by the E-function as
stay, pass-by and stay, respectively. Refer to the snippet D1 within
9:05am-9:15am, its included location estimates are pointed out
by a dashed circle in Figure 2. Based on the spatial annotation
matching introduced above, D1 is mapped to an m-semantics (S1,
9:05am-9:15am, stay). Similarly, D3 within 9:20am-9:42am is
translated into (S5, 9:20am-9:42am, stay) as can be referred in
Figure 2. Besides, the two records in D2 (within 9:16am-9:19am)
is translated into two pass-by m-semantics, (hw-b, 9:16am-9:16am,
pass-by) and (hw-d, 9:19am-9:19am, pass-by).

5. COMPLEMENTING MS-SEQUENCES
In an ms-sequence obtained from the annotation layer, pass-by

m-semantics may be temporally very discrete, implying there may
be information between the associated positioning records. To make
such an ms-sequence complete and coherent, we proceed to present
an inference method to recover the missing m-semantics.

Multiple studies [26, 36] have discovered that people often make
very similar movements between two indoor destinations within
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a relatively small range, regardless of people’s walking purposes
(e.g., to find something or just to look around somewhere). This
finding inspires us to make use of such similar movements to infer
the missing m-semantics between two relevant regions. Specifi-
cally, each stay region rq in an annotated stay m-semantics can be
considered as an indoor destination, and those annotated pass-by
m-semantics between two destinations can be grouped together to
capture the similar movements in-between. By further considering
the indoor mobility constraints, we are therefore able to infer the
unobserved movements given a sequence of m-semantics we have
already annotated.

The complementing consists of two phases, as formalized in Al-
gorithm 3. The first phase (line 2) constructs the mobility knowl-
edge (i.e., similar movements) between any two stay regions (i.e.,
destinations). Using the constructed knowledge, the second phase
(lines 2–5) infers the missing m-semantics for each ms-sequence.
The two phases are detailed in Sections 5.1 and 5.2, respectively.

Algorithm 3: Inference based Complementing
Input: set of ms-sequences SΛ, semantic region graph GR.
Output: set of complemented ms-sequences S′Λ.

1 set S′Λ ←− ∅
2 hash tableMK←− ConstructMobilityKnowledge(GR, SΛ)
3 for each original ms-sequence Λo in SΛ do
4 Λo ←− MSemanticsInference(Λo,MK, GR)
5 add Λo to S′Λ
6 return S′Λ

5.1 Mobility Knowledge Construction
Given two stay regions rqs, rqe, the mobility knowledge about the

similar movements from rqs to rqe consists of two parts. The first part
is a set of candidate paths that accommodate those similar move-
ments, and each path is represented as a sequence of directly con-
nected regions in the semantic region graph GR. The second part is
the transition probabilities between the directly connected regions
in the candidate paths. Next, we elaborate on how to construct the
candidate path set and the transition probabilities, respectively.
Candidate Path Set. We first define indoor candidate path.

DEFINITION 5 (INDOOR CANDIDATE PATH). Given a start
region rqs and an end region rqe, a candidate path from rqs to rqe is
a region sequence φ = rqs � r�i � . . . � r�j � rqe, each pass-
by region r�k (i ≤ k ≤ j) contained in φ is unique, and each two
consecutive regions in φ are directly connected. Moreover, φ’s path
length L(φ) is given by

distgr (rqs, r
�
i ) +

j−1∑

k=i

distgr (r�k , r
�
k+1) + distgr (r�j , r

q
e) (3)

where distgr is the GRD captured in GR.

The path lengthL(φ) is an upper bound of the minimum distance
to ensure that any object can reach rqe from rqs along the path φ. The
proof is given in Lemma 1 in Appendix B.1.

To find a set P of candidate paths from rqs to rqe, we perform an
A*-Search [48] on GR. As the number of such candidate paths can
be very large, we use a path length threshold γ to filter out those
paths whose length is extremely long since the similar movements
are within a relatively small range [26]. The threshold γ should be
determined according to the statistics on the path lengths between
two stay regions. In our experiments, we set γ to the double of the
length of the shortest indoor candidate path from rqs to rqe as a path
length in the experiments never exceeds this value.

Computing path lengths by using the sum of GRDs between di-
rectly connected regions can avoid more complex computations on
the underlying distance-aware model Gdist . Moreover, it facilitates
pruning the irrelevant regions (e.g., those whose sum of GRDs to
rqs or rqe exceeds γ) when searching candidate paths on GR.

EXAMPLE 4. Given the start region rqs = S1 and end region
rqe = S5, the path length threshold γ is set to double 29.5m, the
shortest path length from S1 to S5. As a result, 4 indoor candidate
paths can be searched from the GR shown in Figure 7.

In an iterative matching through the positioning records, the con-
secutive pass-by m-semantics that are matched with the same spa-
tial annotation should be merged together such that their time du-
rations are added up. This helps reduce the semantics redundancy.

The whole procedure of semantic matching is formalized in Al-
gorithm 5 in Appendix C. Example 2 gives the semantic matching
example that is continued with Example 1.

EXAMPLE 2. For the snippet (within period 9:05am-9:15am)
split from the p-sequence, it is determined as a stay event by the E-
function. After matching its spatial annotation on the SDA-graph,
the snippet is mapped to an m-semantics λq(S1, 9:05am-9:15am,
stay). Similarly, the snippet within the period 9:16am-9:19am is
translated into two pass-by m-semantics, (hw-b, 9:16am-9:16am,
pass-by) and (hw-d, 9:19am-9:19am, pass-by). Also, the snippet
within the period 9:20am-9:42am is translated into λq(S5, 9:20am-
9:42am, stay).

5. INFERENCE BASED COMPLEMENT
In an m-semantics sequence (ms-sequence) obtained from the

annotation, the pass-by m-semantics are usually discrete in that the
associated raw positioning records are temporally sparse. To make
a ms-sequence complete and coherent, we proceed to present an
inference approach to complement the missing m-semantics.

Multiple studies [27, 37] have discovered that people often make
very similar movements between two indoor destinations within a
relatively small area, regardless of the people’s walking purposes
(e.g., finding or browsing). Such a discovery inspires us to make
use of those similar movements to infer the missing m-semantics
between two observed regions. Specifically, each stay region rq

in an annotated stay m-semantics can be considered as an indoor
destination, and those annotated pass-by m-semantics between two
destinations can be grouped together to capture the similar move-
ments in-between. By further considering the indoor mobility con-
straints, we are therefore able to infer the missing movements given
a sequence of m-semantics we have already observed.

We formalize the procedure of the inference based complement
in Algorithm 3, which in general consists of two phases. In the first
phase (line 2), we construct the mobility knowledge (similar move-
ments) between any two stay regions (destinations). The details
are given in Section 5.1. In the second phase (lines 2–5), based on
the constructed mobility knowledge, the missing m-semantics are
inferred for each ms-sequence. We detail it in Section 5.2.

Algorithm 3: Inference based Data Complement
Input: set of original ms-sequences SΛ, SDA-graph GSDA.
Output: set of complemented ms-sequences S′Λ.

1 set S′Λ ←− ∅
2 hash tableMK←− ConstructMobilityKnowledge(GSDA, SΛ)
3 for each ms-sequence Λo in SΛ do
4 Λo ←− MSemanticsInference(Λo,MK, GSDA)
5 add Λo to S′Λ
6 return S′Λ

5.1 Mobility Knowledge Construction
Given two regions rqs, rqe ∈ R, the mobility knowledge about

the similar movements from rqs to rqe consists of two parts. The
first part is a set of candidate paths that accommodate those similar
movements, and each path is represented as a sequence of directly
connected regions in the SDA-graph. The second part is the tran-
sition probabilities between the directly connected regions in the
candidate paths. Next, we elaborate on how to construct the candi-
date path set and the transition probabilities, respectively.
Candidate Path Set. We first define indoor candidate path.

DEFINITION 5 (INDOOR CANDIDATE PATH). Given a start
region rqs and an end region rqe, a candidate path from rqs to rqe is
a region sequence φ = rqs � r�i � . . . � r�j � rqe, each pass-
by region r�k (i ≤ k ≤ j) contained in φ is unique, and each two
consecutive regions in φ are directly connected. Moreover, φ’s path
length L(φ) is given by

distgr (rqs, r
�
i ) +

j−1∑

k=i

distgr (r�k , r
�
k+1) + distgr (r�j , r

q
e) (3)

where distgr is the GRD captured in the SDA-graph.

L(φ) is an upper bound of the minimum distance to ensure any
object can reach rqe from rqs along the path φ. The proof is given in
Lemma 1 in Appendix F.

To find a set P of candidate paths from rqs to rqe, we perform an
A*-Search [4] on GSDA. The number of such candidate paths can
be very large, we use a path length threshold γ to filter out those
paths whose length is extremely long since the similar movements
should be within a relatively small indoor area [27]. In the imple-
mentation, γ is usually set to double of the length of the shortest
indoor candidate path from rqs to rqe.

Computing path lengths by using the sum of GRDs between di-
rectly connected regions can avoid the more complex geometry and
topology computations on the DA-graph. Moreover, it facilitates
prunning the irrelevant regions (e.g., those whose sum of GRDs to
rqs or rqe exceeds γ) when searching the candidate paths on GSDA.

EXAMPLE 3. Given the start region rqs = S1 and end region
rqe = S5, the path length threshold γ is set to double of 29.5m, the
length of shortest path from S1 to S5. As a result, 4 indoor candi-
date paths can be searched from the SDA-graph shown in Figure 7
as follows.

S1 8m�
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Transition Probabilities. Next, we compute the transition proba-
bility between each two directly connected regions on a path in the
candidate path set. Specifically, given a set of ms-sequences, a start
region rqs and an end region rqe, we first obtain their region patterns
through the following steps.
1) for each ms-sequence, we find a number of subsequence starting

with m-semantics λq
s and ending with m-semantics λq

e, where
λq
s (λq

e) corresponds to the region rqs (rqe).
2) for each such subsequence represented as 〈λq

s, λ
�
i , . . . , λ

�
j , λ

q
e〉,

we obtain its region pattern as PT = 〈r�i , . . . , r�j 〉 6.

We iterate through all ms-sequences and record each obtained
region pattern and its count number in a hash table HPT . Subse-
quently, we compute the transition probability that an object leaves
a region ri for a directly connected region rj as follows.
1) for each region pattern PT = 〈ri, . . . , rj〉 in HPT , we find a

subset P ′ of paths that hold PT from the candidate path set P .
2) for each path φ ∈ P ′, we calculate its path length L(φ) ac-

cording to Equation 3. Considering that moving objects tend
to choose a shorter path during its moving [37], each path φ’s
weight is inversely proportional to L(φ) and computed as ωφ =
L(φ)−1/

∑
φ∈P ′(L(φ)−1).

6We omit the start and end regions rqs and rqe when context is clear.
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Transition Probabilities. Next, we compute the transition proba-
bility between each two directly connected regions on a path from
the candidate path set. Specifically, given a set of ms-sequences,
a start region rqs and an end region rqe, we first obtain their region
patterns through the following steps.
1) For each ms-sequence, we find all its subsequence that starts

with λq
s and ends with λq

e, where the m-semantics λq
s (λq

e) cor-
responds to the region rqs (rqe).

2) For each such subsequence represented as 〈λq
s, λ

�
i , . . . , λ

�
j , λ

q
e〉,

we obtain its region pattern as PT = 〈r�i , . . . , r�j 〉 7.

We iterate through all ms-sequences and record each obtained
region pattern and its count number in a hash table HPT . Subse-
quently, we compute the transition probability that an object leaves
a region ri for a directly connected region rj as follows.
1) For each region pattern PT = 〈ri, . . . , rj〉 in HPT , we find a

subset P ′ of candidate path set P , in which all paths hold PT .
2) For each path φ ∈ P ′, we compute its path length L(φ) accord-

ing to Equation 3. As moving objects tend to choose a shorter
path on move [36], each path φ’s weight ωφ among all possi-
ble paths is considered to be inversely proportional to L(φ) and
computed as ωφ = L(φ)−1/

∑
φ∈P ′(L(φ)−1).

3) For each pair of directly connected regions 〈rk, rk+1〉 in path
φ, its score is incremented by φ’s weighted score so far. For-
mally, score(〈rk, rk+1〉) += PT .count ∗ωφ, where PT .count
is PT ’s count number inHPT .

4) After each PT has been processed, we compute the transition
probability from region ri to rj as

Pt(ri, rj) =
score(〈ri, rj〉)∑

r∈Out(ri) score(〈ri, r〉)
(4)

whereOut(ri) is the set of all directly connected regions in GR
that an object can enter after leaving ri.

The mobility knowledge construction receives a full set of anno-
tated ms-sequences, and returns a hash table that stores the candi-
date path set and transition probabilities for each stay region pair 8.
The detailed algorithm is given in Algorithm 6 in Appendix A.3.

EXAMPLE 5. Figure 8 gives an example of mobility knowledge
construction with respect to Example 4. We organize all candidate
paths in a sub-graph of GR for the sake of presentation. Refer to
7We omit the start and end regions rqs and rqe if the context is clear.
8In fact, mobility knowledge is only constructed for a small frac-
tion of region pairs, as we set an upper limit to the path length
threshold γ in order to constrain the candidate path generation.
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a region pattern PT = 〈hw-b, hw-c, hw-d〉. Two candidate paths
φ1 and φ2 that support PT are found, with respective weight 0.54
and 0.46. Subsequently, each pair of directly connected regions in
φ1 (e.g., 〈S1, hw-b〉 and 〈hw-b, hw-c〉) is added with PT .count ∗
0.54 = 41 ∗ 0.54 and each pair in φ2 is added with 41 ∗ 0.46.
After all region patterns inHPT have been processed, we compute
the transition probability for every two directly connected regions.
As indicated by the numbers (on the edges) in Figure 8, an object
currently seen in hw-b has a probability 0.65 to enter hw-c and only
a probability 0.12 to enter hw-f.

S3hw-a hw-e

S1 hw-b hw-f

hw-c S4 hw-g

hw-d S5

start 

region

end 

region

〈hw-b , hw-c , hw-d〉
count is 41

ϕ1

ϕ2
S1  hw-b  hw-c  S4  hw-d  S5

S1  hw-b  hw-c  hw-d  S5 +0.54*41

 +0.46*41
(path length=35m, weight = 0.46)

(path length=29.5m, weight = 0.54)
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Figure 8: Example of Mobility Knowledge Construction

Note that the mobility knowledge can be updated when batches
of m-semantics from the annotation layer are available. We evalu-
ate using such a continuous updating paradigm in Section 6.1.3.

5.2 Missing M-Semantics Inference
Given the incomplete observations in an ms-sequence, we infer

its missing m-semantics in two steps, namely a most-likely path in-
ference (Section 5.2.1) and a time period inference (Section 5.2.2).
The algorithm is formalized as Algorithm 7 in Appendix A.4.

5.2.1 Most-likely Path Inference
Generally, for an observed ms-sequence Λ

(o)
o = 〈λq

s, λ
�
q , λ

q
e〉,

our path inference needs to find a mostly-like path that supports its
region pattern PT (o) = 〈rqs, r�q , rqe〉.

Given the candidate path set P constructed for 〈rqs, rqe〉, each
path φ ∈ P that supports PT (o) can be denoted as rqs � r�a �
. . . � r�b � r�q � r�c � . . . � r�d � rqe, where r�a � . . . �
r�b and r�c � . . . � r�d are the missing sub-paths between two
consecutive observed regions in PT (o). Note that two consecutive
regions in PT (o) are usually not directly connected since the raw
indoor positioning records are usually discrete.

Following the literature [40, 32] in human mobility predicition,
we assume the object movement between regions is a first-order
Markov stochastic process, i.e., a region where an object is cur-
rently in is only related to the previous region it went through.
Given an observed pattern PT (o), a path φ’s posterior probabil-
ity P (φ|PT (o)) 9 satisfies the expression below.

P (φ|PT (o)) ∝ P (r�q |r�b )

b−1∏

x=a

P (r�x+1|r�x )P (r�a |rqs)·

P (rqe|r�d )

d−1∏

y=c

P (r�y+1|r�y )P (r�c |r�q )

(5)

where P (r�x+1|r�x ) is equivalent to our captured transition proba-
bility Pt(r�x , r�x+1) in Equation 4. To find a most-likely path, we
9Detailed derivation is given in Appendix B.2.

formulate it as a maximum a posteriori problem:

arg max
φ

P (φ|PT (o)) =

arg max
r�a �...�r�

b
⊆φ
Pt(r

q
s, r

�
a )

b−1∏

x=a

Pt(r
�
x , r

�
x+1) Pt(r

�
b , r

�
q )

arg max
r�c �...�r�

d
⊆φ
Pt(r

�
q , r

�
c )

d−1∏

y=c

Pt(r
�
y , r

�
y+1) Pt(r

�
d , r

q
e)

(6)

A max-product algorithm [16] is used to solve this problem. By
taking the transition probabilities from the mobility knowledge as
input, it finds an optimal sub-path between two consecutive ob-
served regions in the observation PT (o) (e.g., rqs, r�q or r�q , rqe) as
the one with the maximum probability. By assembling those opti-
mal sub-paths it finds, we can obtain a most-likely path for Λ

(o)
o .

If no candidate path φ is found to support the region pattern
PT (o), we attribute it to the random errors that jump to another
partition. In such a case, we modify PT (o) as follows. For any re-
gion r′ in PT (o) that is not contained by any path in the candidate
path set P , we change it to the most adjacent region r′′ from those
contained by any path in P .

EXAMPLE 6. Refer to the ms-sequence in Example 3. We ob-
tain its observed region pattern PT (o) = 〈S1, hw-b, hw-d, S5〉. To
infer the most-likely path, we use the mobility knowledge to find the
optimal sub-path between every two consecutive regions in PT (o)

(c.f. Equation 6). Suppose that the optimal sub-paths between S1
and hw-b, hw-b and hw-d, hw-d and S5 are found as S1 � hw-b,
hw-b � hw-c � hw-d, and hw-d � S5, respectively. The most-
likely path is then assembled as S1 � hw-b � hw-c � hw-d � S5.

5.2.2 Time Period Inference
In the most-likely path inference, we find an optimal sub-path

φ∗ = rp � . . . � rq for each two consecutive m-semantics λp
and λq in an observed ms-sequence. Next, we annotate each region
rx ∈ φ∗ with a temporal annotation, i.e., a time period, to fill the
missing m-semantics between λp and λq .

For each such region rx, its temporal annotation should be di-
vided from the time period between λp and λq , i.e., Tλp,λq =
[λp.τ.te, λq.τ.ts]. However, it is hard to determine the time period
that the object is in rx as the object movement is unobserved dur-
ing Tλp,λq . Also, the temporal annotations already made in other
observed ms-sequences can hardly be used to infer the time period
for rx as the walking speed is variable and different across different
moving objects. To ease computation, we assume that the moving
object moves along its path with a constant speed during Tλp,λq .
Consequently, we can use the GRD between two regions as the ref-
erence 10 to divide rx’s time period from Tλp,λq .

Formally, for a region rx in φ∗ = rp � . . . � rq , its time period
is inferred as τx = [t

(x)
s , t

(x)
e ] where

t(x)
s = λp.τ.te + ∆t ·

∑x
i=p distgr(rp, ri)∑q
i=p distgr(rp, ri)

t(x)
e = λp.τ.te + ∆t ·

∑x+1
i=p distgr(rp, ri)∑q
i=p distgr(rp, ri)

(7)

and ∆t = λq.τ.ts−λp.τ.te in Equation 7 is the duration of Tλp,λq .
When the time period τx is inferred for rx, we differentiate two

cases. If rx has already appeared in an m-semantics in the observed

10As discussed in Section 4.2.2, a larger region usually costs more
time to come out as indicated by its GRDs to its connected regions.
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ms-sequence, the time period is added to the corresponding m-
semantics. Otherwise, we should generate a missing m-semantics
as (rx, τx, pass-by), which means the object has passed through
region rx within the time period τx. We add each generated m-
semantics to the observed ms-sequence. As a result, the comple-
menting is accomplished.

EXAMPLE 7. Continuing with Example 6, we process one of
the optimal sub-paths hw-b � hw-c � hw-d. For the regions hw-
b, hw-c and hw-d it contains, we divide the time period 9:16am-
9:19am into three slices according to Equation 7, i.e., 9:16am-
9:18am, 9:18am-9:19am and 9:19am-9:19am. As hw-b and hw-d
have appeared in the observed ms-sequence, their time periods are
added to the corresponding m-semantics. Moreover, we generate a
missing m-semantics (hw-c, 9:18-9:19am, pass-by). Likewise, we
process other sub-paths and obtain a complete ms-sequence:

(S1, 9:05am-9:16am, stay) � (hw-b, 9:16am-9:18am, pass-by)

� (hw-c, 9:18am-9:19am, pass-by) � (hw-d, 9:19am-9:20am, pass-by)

� (S5, 9:20am-9:42am, stay)

6. EXPERIMENTAL STUDIES
All programs are in Java and run on an Intel Xeon E5-2660

2.20GHz machine with 8GB memory.

6.1 Experiments on Real Data
Setting. We collected the real data from a Wi-Fi based positioning
system in a 7-floor shopping mall in Hangzhou, China from Jan 1
to Jan 31, 2017. The daily numbers of objects (i.e., device MAC
addresses) and positioning records in the operating hours (10AM -
10PM) were around 7,647 and 2,907,904, respectively. As a result,
we obtained a total of 237,057 p-sequences. According to our sur-
vey, the positioning data error based on MIWD varied from 2 to 25
meters; the average sampling rate was around 1/18 Hz, i.e., a de-
vice can be observed about once every 18 seconds. We decomposed
the whole indoor space 11 and obtained 3,742 indoor partitions and
6,534 doors. In the mall, 202 shops were selected as semantic re-
gions based on the application needs. The semantic region graph
and its associated partition R-tree were kept in memory as they to-
gether are only 12.6 MB. The shortest indoor paths between doors
were pre-computed to speed up computations on MIWD and GRD.
Their maximum memory consumption was 990.8 MB.

We developed a visualization tool 12 to manually annotate m-
semantics on the p-sequences as we were unable to know a de-
vice’s exact whereabouts. Among the ms-sequences we annotated,
9,687 ms-sequences (including 125,544 m-semantics) formed the
ground truth for evaluation, and the other 1,004 ms-sequences (in-
cluding 17,322 m-semantics) were used to initialize the E-function
on Jan 1. Particularly, an individual stay m-semantics or a num-
ber of consecutive pass-by m-semantics formed a snippet, and each
snippet was extracted as a 28-dimensional feature vector for the
model training. From Jan 2 to Jan 30, E-function was continuously
enhanced by a co-training paradigm [9] in which the most confi-
dent predicted snippets (with posterior probability ≥ 0.9 or ≤ 0.1)
were added to the training set at the end of each day. The mobil-
ity knowledge was initially constructed for Jan 1 and also updated
daily. The candidate path sets were generated for 10,682 directed
region pairs, and the average path set size was 7.7. We kept the
mobility knowledge in memory as it only needs around 36.1 MB.
Performance Metrics. In our framework implementation, we used
one thread for each object. Therefore, we study the efficiency of our

11The decomposition algorithm is given in [43].
12A relevant work is under review in the demo track. A demonstra-
tion video is available at https://longaspire.github.io/trips.

proposed techniques in terms of average running time for process-
ing an individual object’s data.

As the m-semantics is newly defined in this paper, we propose a
new metric to measure its effectiveness with respect to ground truth.
Formally, we say a constructed m-semantics λ is η-acceptable to
its ground truth λg if λ.π = λg.π, λ.δ = λg.δ and |λ.τ∩λg.τ ||λg.τ | ≥
η. A bigger η indicates that λ is more consistent with λg , and
thus more accurate and qualified to satisfy the application need.
E.g., applications in security usually require larger η-acceptable m-
semantics than those in shopper analysis. Consequently, we define
the η-acceptable recall as the fraction of ground truth m-semantics
that can find an η-acceptable m-semantics among all ground truth
m-semantics. When η = 1, our η-acceptable recall equals to the
metric recall. We do not use the conventional recall because it is too
rigid for m-semantics that hardly have exact, simultaneous spatial
and temporal matches in the ground truth.

6.1.1 Comparison of Annotation Methods
Our annotation method, denoted as Dense-E+LEC, was imple-

mented as two key modules. One is a temporal-event annotator
depending on the density based splitting method (Section 4.1) and
E-function (Section 4.2.1). The other is a spatial annotator that
mainly uses the location estimate confidence to match semantic re-
gions for stay m-semantics (see Section 4.2.2). We designed sev-
eral alternatives to compare with Dense-E+LEC by modifying its
modules. On the one hand, we implemented the SMoT method [4]
(described in Section 4.1) for the temporal-event annotator. On the
other hand, we used two different matching methods in the coun-
terpart of the spatial annotator. The first called CTRD computes
the centroid of all location estimates and selects the covering re-
gion as the spatial annotation. The second called VOTE counts the
location estimates falling in each region and matches the one with
the highest count. By combining these modifications, we obtained
five alternative methods, i.e., Dense-E+CTRD, Dense-E+VOTE,
SMoT+LEC, SMoT+CTRD and SMoT+VOTE. All alternatives are
equipped with a cleaning layer and a complementing layer. Their
performances are reported in Figure 9.

0

1 0 0

2 0 0

3 0 0

4 0 0 ( a )  E f f i c i e n c y

AV
G.

 Ru
nn

ing
 Ti

me
 (m

s.)

a n n o t a t i o n  m e t h o d s

 D e n s e - E + L E C   D e n s e - E + C T R D   D e n s e - E + V O T E  
 S M o T + L E C       S M o T + C T R D       S M o T + V O T E

η= 0 . 6 η= 0 . 7 η= 0 . 8 η= 0 . 90 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0 ( b )  E f f e c t i v e n e s s

η-a
cce

pta
ble

 Re
ca

ll

Figure 9: Performance of Annotation Methods on Real Data
Referring to Figure 9(a), all methods based on Dense-E require

more time to annotate m-semantics than those with SMoT. Despite
the minor time spent in event identification, the time complexity
is O(n · logn) for the density based splitting and only O(n) for
SMoT, where n is the record number of a p-sequence. Compar-
ing the three methods that use the same temporal-event annotator
(i.e., Dense-E or SMoT), the method using LEC costs the most in
making spatial annotations as it has to evaluate the confidence for
each location estimate. The cost is slightly higher if a method uses
VOTE other than CTRD, as VOTE needs to rank all involved re-
gions and select the best. Nevertheless, our Dense-E+LEC method
can process a p-sequence within 350 milliseconds, which is very
efficient for most analysis applications.

Figure 9(b) reports the η-acceptable recalls in different settings
of η. The methods with Dense-E clearly outperform those with
SMoT, which shows the spatiotemporal density information is more
useful than the speed information in splitting p-sequences and iden-
tifying mobility events. Combining with either Dense-E or SMoT,
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the spatial matching method LEC always outperforms VOTE and
CTRD in all η values.

To sum up, our proposed method Dense-E+LEC achieves a very
good balance between efficiency and effectiveness, and therefore it
is very useful in annotating m-semantics.

6.1.2 Effect of Cleaning and Complementing
We compared our complete three-layer framework IMS-CAC (C

denotes cleaning and C denotes complementing) with several alter-
natives. Specifically, IMS-A only contains a single annotation layer,
two-layer method IMS-CA uses a cleaning layer before annotation,
whereas another two-layer IMS-AC adds a complementing layer af-
ter the annotation layer. Note that the annotation layer is necessary
for constructing m-mobility. We report the construction results on
the number of m-semantics per ms-sequence and η-acceptable re-
call for these four methods in Table 3.

Method Number of
M-Semantics

η-acceptable Recall
η=0.6 η=0.7 η=0.8 η=0.9

IMS-A 11.94 0.3555 0.2926 0.2187 0.1642
IMS-CA 10.23 0.6615 0.5577 0.3825 0.2825
IMS-AC 14.51 0.4645 0.3858 0.2638 0.2155
IMS-CAC 14.12 0.8756 0.7828 0.6318 0.4834

Table 3: Effect of Cleaning and Complementing on Real Data
Clearly, IMS-A is the worst as it directly annotates m-semantics

on the raw data. Only 35.6% of the ground truth can find a 0.6-
acceptable m-semantics in the result of IMS-A. In contrast, IMS-
CA with a cleaning layer significantly outperforms IMS-A; the re-
call in each setting is increased almost by double, and the number
of m-semantics per ms-sequence is decreased from 11.94 to 10.23.
These results indicate that our cleaning method repairs many posi-
tioning data errors and removes their resultant wrong m-semantics.
Therefore, the cleaning layer is able to improve the input data for
subsequent layers. This effect of cleaning is also observed when we
compare the results of IMS-CA and IMS-AC. Although the latter
produces more m-semantics, many of them are problematic as they
result from uncleaned data. Therefore, the recalls of IMS-AC are
considerably lower than their counterparts of IMS-CA.

IMS-CAC is always the best among all. When η is set to 0.6,
its recall is greater than 0.87. Also, 48% of ground truth can be
matched with a 0.9-acceptable m-semantics. These results show
that IMS-CAC is able to produce reliable m-semantics highly con-
sistent with the ground truth. With the help of our inference based
complementing, IMS-CAC is able to recover the missing m-semantics
that IMS-CA is unable to produce. As a result, the number of m-
semantics per ms-sequence is increased to 14.12 from 10.23. More
importantly, because of the combined effects of cleaning and com-
plementing, IMS-CAC’s recall improves clearly compared to IMS-
CA and the others. In summary, the m-semantics construction on
real data remarkably benefit from using our complete framework.

We also measure the average running time of processing an ob-
ject’s relevant data for each layer. The time costs in cleaning, anno-
tation and complementing layer are around 42.6ms, 321.8ms, and
11.8ms, respectively. As the cleaning and complementing layers in-
cur relatively very low time cost while improving the construction
effectiveness significantly, it is beneficial and necessary to include
them in our framework.

6.1.3 Effect of Daily Updating Paradigm
We also study the effect of using a daily updating paradigm in

constructing m-semantics. In the daily updating case, m-semantics
annotated from the previous day were accumulated for re-training
E-function and updating mobility knowledge. In the case without
daily updating, E-function and mobility knowledge were only built

with the data obtained from Jan 1. We measured 0.6-acceptable re-
calls for the IMS-CA and IMS-CAC methods in each day from Jan
2 to Jan 31. The methods without daily updating are marked with
‘w/o DU’. Referring to Figure 10, the recalls of the methods with-
out daily updating fluctuate a lot and in general decrease as the day
goes on, whereas those of the methods with daily updating improve
and stabilize as time goes by. When the daily updating paradigm
is employed, E-function and mobility knowledge are continuously
enhanced by more annotated m-semantics. Note that IMS-CAC in-
creases more rapidly than IMS-CA as it exploits an additional com-
plementing layer where the mobility knowledge can be periodically
updated. The results show it is very helpful to update E-function
and mobility knowledge when raw positioning data is continuously
streamed in.
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Figure 10: Effectiveness vs. Daily Updating on Real Data

6.1.4 M-Semantics’ Ability to Answer Queries
We also evaluated our constructed m-semantics’ ability to an-

swer typical queries. Given a query set Q of indoor semantic re-
gions and a time interval T , we introduce two top-k queries.
1) A Top-k Popular Region Query (TkPRQ) finds k semantic re-

gions from Q that have the most number of visits 13 within T .
2) A Top-k Frequent Region Pair Query (TkFRPQ) finds k most

frequent pairs of semantic regions from 2Q that both have been
visited by the same object within T .

TkPRQ and TkFRPQ are very useful in studies like popular in-
door location discovery [30] and frequent pattern mining [26, 20].
Other than the m-semantics constructed by the four methods in Ta-
ble 3, we use the corresponding raw data and cleaned raw data to
answer the two queries. The two corresponding methods are de-
noted as RAW and RAW-C, respectively. We introduce a naive strat-
egy to each method, i.e., we compute the visits for all query regions
(or region pairs) and return the top-k results by a full ranking. As no
semantics is provided in the raw positioning data, an interpretation
on a visit to a semantic region is done for the RAW and RAW-C
methods. In particular, if an object’s reported locations have been
falling in a region over a time period of Ts, the object is considered
to have visited that region for once. We set Ts to 1.5 min. in RAW
and 3 min. in RAW-C for an optimized tuning.

We compared all methods’ efficiency in terms of query execution
time. Besides, we evaluated their effectiveness with respect to the
ground truth results computed from the ground truth m-semantics
described in the experimental setting. In particular, we used the
metric precision that measures the ratio of the true top-k regions
(or region pairs) in the returned top-k results. We issued 20 random
queries for each query type and report the average efficiency and
effectiveness measures. We fixed k = 60 and randomly pick 101
(50% of all) semantic regions to the query set Q. We varied the
query time interval T as 60, 120, 180, 240 min..

The efficiency results for TkPRQ and TkFRPQ are reported in
Figure 11(a) and (b), respectively. In each test, the four IMS meth-
ods are faster than RAW and RAW-C by almost two orders of
magnitude. When T increases, more data (positioning records in
RAW/RAW-C and m-semantics in IMS methods) should be loaded,
and both queries incur more time to return the results. As the

13In the query context, a visit is equivalent to a stay event.
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scale of raw data is much greater than that of m-semantics, RAW’s
and RAW-C’s execution time increases more rapidly than all IMS
methods. In fact, raw positioning data collected in a month was
around 3.44 GB, whereas m-semantics constructed by IMS-CAC
was only 220.1 MB. Moreover, IMS-CAC can return the results
for both TkPRQ and TkFRPQ within one second for a four-hour
query. These results verify that our constructed m-semantics are
very efficient in answering the two top-k queries.
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Figure 11: Query Answering Efficiency vs. T on Real Data
We also measured the effectiveness in each aforementioned set-

ting. As shown in Figure 12(a) and (b), for both types of queries,
the precision of all methods decreases with an increasing T . When
a longer T is used, more relevant data should be considered in the
query processing, which involves more data errors and makes the
results less effective. Nevertheless, all methods with cleaning (i.e.,
RAW-C, IMS-CA and IMS-CAC) decrease very slowly. Among
them, IMS-CA and IMS-CAC always outperform RAW-C, show-
ing that the brief information kept in m-semantics can capture the
underlying object movements very well. Moreover, when T in-
creases to 240 min., m-semantics constructed by IMS-CAC can still
achieve a precision 82.8% for TkPRQ and 79.1% for TkFRPQ.
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Figure 12: Query Answering Effectiveness vs. T on Real Data

We also studied the effectiveness by varying other parameters.
In general, the precision results on varying k and |Q| also verify
that the m-semantics constructed by IMS-CAC are significantly ef-
fective in answering the two queries than other methods. Such ad-
ditional results can be found in Appendix C.1.

6.2 Experiments on Synthetic Data
We used synthetic data to further verify our proposals’ effec-

tiveness when different levels of temporal sparsity and positioning
errors are present in the raw indoor positioning data.

By using the indoor mobility data generator Vita [27], we sim-
ulated a 10-floor building environment with 4 staircases, 1,410 in-
door partitions and 2,200 doors. A total of 423 semantic regions
were decided upon the partitions at random. We generated moving
objects in the environment for a period of 4 hours. Specifically,
10K objects were distributed to the floors, each having a lifespan
varied from 10 seconds to 4 hours. Object maximum speed was set
to Vmax = 1.7m/s and object movements followed the waypoint
model [23]. In particular, each semantic region is considered as a
destination, an object moves towards its destination along a pre-
planned indoor path, it stays at the destination for a random time
period from 1 second to 30 min. after arrival, and it moves again
to the next destination that is decided randomly. We recorded an
object’s location every second as the ground truth trajectory, and
generated its true m-semantics according to the simulated behav-
ior, i.e., staying at (moving towards) a destination was regarded

as a stay (pass-by) event. We obtained 998,618 ground truth m-
semantics from the 10K objects’ ms-sequences.

The synthetic IPT is maintained according to the ground truth
trajectories as follows. After an object has sent an update to IPT,
it keeps silent for at most T seconds. The maximum positioning
period T refers to the maximum value of the time interval between
two consecutive positioning records of an object. A location up-
date is randomly within µ meters from the true location. False
floor values and location outliers are added to the updates with cer-
tain probabilities (3% and 3%, respectively). In particular, a false
floor value is produced within two floors up or down, and an outlier
is randomly within 2.5µ-10µ meters from the true location. The
positioning error factor µ measures the average distance between
the positioning location and its true location. To test the effects of
temporal sparsity and positioning error, we varied T and µ, respec-
tively. The synthesized IPT instances as listed in Table 4.

IPT Instance Parameter Setting # of Generated Records
T5µ3 T = 5s, µ = 3m 15,231,971
T5µ4 T = 5s, µ = 4m 15,230,508
T5µ5 T = 5s, µ = 5m 15,218,742
T10µ3 T = 10s, µ = 3m 7,416,906
T15µ3 T = 15s, µ = 3m 4,945,824

Table 4: Synthetic IPT Instances
The memory consumptions for GR, shortest indoor paths be-

tween doors, and mobility knowledge were 13.6 MB, 458 MB, and
48 MB, respectively. We randomly selected 3% of the ground truth
ms-sequences to train E-function, and the rest (including 968,660
m-semantics) were used as testing data in the evaluation.
M-Semantics Construction Effectiveness. We tested the four meth-
ods in Table 3 on different IPT instances. We set a medium η = 0.7
to measure the consistency between constructed m-semantics and
the ground truth described above. First, we fixed µ = 3m and
vary T . The results are reported in Figure 13(a). When varying
T from 5s to 15s, i.e., the observed data becomes sparser (see Ta-
ble 4), and all methods’ recalls decrease but IMS-CAC’s decreases
the slowest. Also, the performance gap between IMS-CAC and
IMS-CA tends to expand when a larger T is involved, showing that
our data complementing is very effective at recovering the miss-
ing m-semantics when the positioning data becomes sparser. When
T=15s, IMS-CAC can still have a 0.7-acceptable recall of 83%.
Still, IMS-A’s recall is the worst and decreases rapidly when T in-
creases. IMS-CA and IMS-CAC equipped with a cleaning layer
clearly outperform the other two in all tests.

We also fixed T to 5s and tested with different µs. Refer to the
recall measures reported in Figure 13(b). When µ increases, both
IMS-CAC and IMS-CA stay stable while the others without clean-
ing decrease rapidly. This demonstrate that our raw data cleaning
is very useful to reduce the negative impact of the positioning er-
rors. Besides, IMS-CAC outperforms IMS-CA in all tests due to
the benefits of the complementing.
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Figure 13: Construction Effectiveness on Synthetic Data

The results reported in different settings of T and µ show that the
overall framework IMS-CAC works very effectively at construct-
ing m-semantics even when the raw data quality is relatively low.

With the ground truth trajectories in synthetic data, we also stud-
ied the effectiveness of our raw data cleaning method alone. The
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additional results in Appendix C.2 demonstrate that our raw data
cleaning method is still effective for different T and µ values.
M-Semantics’ Ability to Answer Queries. For each IPT instance,
we answered the TkPRQ and TkFRPQ queries with the six meth-
ods introduced in Section 6.1.4. In the experiments, parameter Ts
that indicates a visit to a region was tuned to 2 min. in RAW and 3.5
min. in RAW-C. A total of 212 (50% of all) semantic regions were
picked to form query set Q, k was set to 60, and T to 120 min..
The precisions of different methods are reported in Figure 14.
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Figure 14: Query Answering Effectiveness on Synthetic Data

Referring to the results of T5µ5, T5µ4 and T5µ3 in Figure 14(a)
and (b), precisions of all methods decrease when µ increases in
both queries. All methods with data cleaning clearly outperform
the others in the tests. When µ increases to 5m, our proposed IMS-
CAC can still have a precision of 91.06% for TkPRQ and 88.84%
for TkFRPQ, showing a very high effectiveness in answering the
two queries when the raw data contains many errors.

Referring to the results of T5µ3, T10µ3 and T15µ3 for the two
queries in Figure 14(a) and (b), the precision of each method de-
creases with an increasing T . However, IMS-CAC using the com-
plementing decreases very slightly, while RAW-C and IMS-CA de-
teriorate more rapidly. These results show that our complement-
ing is very useful to improve the constructed m-semantics, espe-
cially when the raw data is temporally sparse. IMS-A performs
very poorly for both queries—sometimes it is even worse than di-
rectly using the raw data. Thus, it is very necessary to employ all
three layers in constructing reliable m-semantics for query use.

7. RELATED WORK
Semantic Trajectory Modeling. A semantic trajectory is gener-
ally defined as a (GPS) data trace enhanced with annotations and/or
complementary segmentations [35]. Alvares et al. [4] propose to
extract stop and move events from trajectory sample points based
on the geographic information. Marketos et al. [33] design a trajec-
tory reconstruction method to transform raw trajectories into valu-
able information needed by specific application. Yan et al. [46]
propose a kind of hybrid trajectory that encapsulates both geometry
and semantics of mobility data and supports different levels of ab-
straction. Su et al. [41] propose a partition-and-summarization ap-
proach, in which a raw trajectory is segmented according to moving
object’s behavior, and the characteristics of each trajectory segment
are summarized by a human-readable short text.

Our work differs from these works in three aspects. First, our
work studies the mobility data collected from indoor space. The
limitations of indoor positioning, complex indoor topology, and
particular mobility constraints [31] make our problem distinctive
from those in free spaces [4, 33] or road networks [46, 41]. Sec-
ond, our work translates raw positioning data into a number of
triplets with generic mobility events, whereas work [41] generates
the unstructured texts. Third, our work further complements the
ms-sequence by leveraging the mobility knowledge obtained from
historical data, which is not considered in works [4, 46, 33]. Con-
sequently, all these works are unsuitable to address our problem.

A recent work [38] mines the indoor stop-by pattern as a se-
quence of occurence regions from uncertain RFID data. Different
input data and problem definition make it unsuitable for our study.

Indoor Mobility Data Cleaning. Indoor positioning data is more
discrete and less accurate compared to GPS data due to the limita-
tions of indoor positioning technologies [27]. To clean raw RFID
data, Chen et al. [10] design a Bayesian inference approach that
makes use of duplicate RFID readings and prior knowledge about
readers and environment. The likelihood is captured by design-
ing a state detection model. Baba et al. clean the RFID track-
ing data by utilizing either the integrity constraints [7, 6] implied
by indoor RFID reader deployment or the relevant knowledge [5]
learned from historical data. In their early solutions, distance-aware
graph [7] and probabilistic graph [6] are designed to handle the
false positives and false negatives, respectively. Their learning based
approach [5] uses an indoor RFID Multi-variate HMM to build
the correlation of indoor object locations and RFID readings. The
method requires only minimal information of reader deployment
but it is able to handle both false positives and false negatives.

In these works, RFID data represents object location as symbolic
position, whereas our work considers a type of positioning data in
which an object’s location at a certain time is described as a point.
Also, our cleaning method identifies and repairs three types of data
errors in one pass, while works [7] and [6] can only handle one spe-
cific type of data error in a separate, specialized process. Moreover,
our inference method for recovering the missing data is different
from the state detection model [10], probabilistic graph [6], and
multi-variate HMM [5] in three points. First, our inference is based
on the mobility constraints captured at the level of user mobility
semantics. Second, we model and capture the similar movements
between each pair of indoor semantic regions, while works [10, 6,
5] build the prior knowledge in a global scope. Third, unlike other
works, our transition probability computation considers the effect
of the corresponding indoor path’s walking length.

There also exist cleaning methods for indoor positioning data
in the format of points. Filtering methods such as Bayesian filter-
ing [14] and Kalman filtering [47] are commonly used in this data
setting. Besides, assuming indoor trajectories that conform with
underlying route networks, Prentow et al. [37] propose a bootstrap-
ping approach and adjunctive matching algorithms to mitigate the
positioning error bias. Differently, our cleaning method utilizes in-
door mobility constraints that are not embedded in those filtering
based methods [14, 47], and does not need the hypothesis [37] that
locations must be constrained in the route networks.

8. CONCLUSION AND FUTURE WORK
This paper tackles the problem of translating mobility seman-

tics from raw indoor positioning data. We propose a three-layer
framework with a set of novel techniques. In the cleaning layer,
we design a mobility constraint based cleaning method that elim-
inates indoor positioning data errors. In the annotation layer, we
design a density based splitting method to split the cleaned data
sequence into snippets according to the spatial and temporal den-
sities of the data, and a semantic matching method to make proper
annotations and decide mobility semantics for the snippets. In the
complementing layer, we devise an inference method to recover the
missing mobility semantics with the mobility knowledge captured
from historical data. The experiments on real and synthetic data
verify that our framework is efficient and effective in constructing
mobility semantics, and the constructed mobility semantics are able
to answer typical queries efficiently and effectively.

For future work, it is useful to incorporate the temporal annota-
tions of mobility semantics in inferring the missing data. It is inter-
esting to integrate with other types of mobility data, such as RFID
or Bluetooth tracking data, to make our framework more generic.
It is also useful to enrich the mobility semantics by making use of
other user behavior data such as transaction logs or check-ins.
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