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With the continued deployment of the Internet of Things (IoT), increasing volumes of devices are being deployed
that emit massive spatially referenced data. Due in part to the dynamic, decentralized, and heterogeneous
architecture of the IoT, the varying and often low quality of spatial IoT data (SID) presents challenges to
applications built on top of this data. This survey aims to provide unique insight to practitioners who intend
to develop IoT-enabled applications and to researchers who wish to conduct research that relates to data
quality in the IoT setting. The survey offers an inventory analysis of major data quality dimensions in SID
and covers significant data characteristics and associated quality considerations. The survey summarizes data
quality related technologies from both task and technique perspectives. Organizing the technologies from the
task perspective, it covers recent progress in SID quality management, encompassing location refinement,
uncertainty elimination, outlier removal, fault correction, data integration, and data reduction; and it covers
low-quality SID exploitation, encompassing querying, analysis, and decision-making techniques. Finally, the
survey covers emerging trends and open issues concerning the quality of SID.

1 INTRODUCTION

The Internet of Things (IoT) interconnects massive numbers of devices to enable functionality such
as ubiquitous perception and communication and smart decision-making [152, 185, 246]. IoT plays
a pivotal role in many verticals, including in application related to smart cities [87, 152, 182], smart
transportation [198], smart buildings [113, 230], smart healthcare [125], and smart energy [9, 207].
With an annual growth rate of 25% in smart, interconnected “things” (e.g., sensors, actuators,
wearables, and vehicles) [5], we will witness explosive growth in IoT data collected from the
physical world. Market intelligence firm IDC (International Data Corporation) predicts that the
volume of data generated by IoT devices will reach 80ZB by 2025 [6]. As a concrete example of an
IoT vertical, a smart meter project in Germany produces over 25TB of data per day [9]. As another
indication of the growth in data volumes, research by the company Hazelcast [7] reports that the
full rollout of 5G networks will increase the number of interconnected mobile devices per square
kilometer from the current 4000 to 1 million and will incur high-speed data streams on a vast scale.

In the geographic information and mobile computing communities, IoT data is envisioned as a
huge treasure trove since a considerable proportion of IoT devices and the data they generate are
spatially referenced [186]. On the one hand, many IoT devices can self-localize through GPS. On
the other hand, positioning technologies enabled by the wireless communication infrastructure
and wireless and ambient devices have been integrated widely into the IoT infrastructure (called
Location of Things [186]) to provide spatial references to other IoT devices. We call such spatially
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Table 1. Related Review Papers on loT, Data Quality (DQ), and Spatial Computing (SC)

Reference ToT Sc];)ge SC Concerns
Lietal. [117] - v v | characteristics of big geospatial data and issues in handling them
Goodchild [70, 71] - v V' | quality and uncertainty issues of big geodata processing
Guptill and Morrison [76] - v V' | elements of evaluating spatial data quality
Devillers et al. [58] - v V' | recent achievement and open issues in improving spatial data quality
Li et al. [108] - v v/ | quality assessment tools and uncertainty-aware spatial analytics
Zifle et al. [284, 285] - v' | v/ | major challenges in handling uncertain geospatial data
Zheng and Su [279] - v v | quality and semantics of raw trajectory data
Tsai et al. [208] v o - | features of IoT data and data mining techniques for IoT
Siow et al. [187] v ° - | 10T and big data analytics in creating applications and services
Mohammadi et al. [158] v o - | deep learning for IoT big data and stream data analytics
Karkouch et al. [95] v v - | IoT factors endangering data quality and IoT outlier detection
Banerjee et al. [24] v v - | human-in-the-loop for IoT data quality control
Ann and Wagh [16] v v - | IoT data testing layer for data quality assurance
Perez-Castillo et al. [175] v v - | IoT data quality in smart, connected product (SCP) environments
Liu et al. [131] v v - | IoT data quality dimensions and related measurement methods
Song and Zhang [189] v v - | deep learning for validity, completeness, and consistency of IoT data
Shit et al. [186] v - v | analysis and taxonomy of IoT-based localization techniques
Javarneh et al. [12] v - v | cloud-based big spatial data management frameworks for IoT
Mahdavinejad et al. [152] v o o | machine learning methods for IoT smart cities
Chen et al. [47] v o v | robustness, security, and privacy of IoT-enabled Location-based Services
Li et al. [122] v o v | error sources and mitigation methods of IoT-signal-based localization
Ours v v V' | quality management of SID and exploitation of low-quality SID

v focused, o partially covered, - not mentioned

referenced data from IoT devices spatial IoT data (SID). Two important special cases of SID are
distinguished: trajectories, as time series of location values; and spatiotemporal IoT data (STID),
general sensory data values with temporal and spatial references.

SID represents frequent observations in potentially large spatial regions, thus offering an exciting
foundation for new insights to be utilized in queries, analyses, and decision-making in diverse
applications. For example, one study [163] uses spatiotemporal data collected from urban traffic
systems to enable dynamic and flexible congestion control. Another study [182] demonstrates how
analyses of massive trajectories and STID can contribute to smart city construction.

However, quality issues associated with SID have become an obstacle for IoT-enabled spatial
applications [47]. These issues are due to a variety of properties of the IoT, including the following
three. First, IoT devices often have limited capabilities or limited resources that cause the generated
spatial information to be erroneous, incomplete, or duplicated [122, 123, 191, 267]. Second, the IoT
is decentralized and spans potentially massive numbers of devices that continuously collect and
emit data. This can lead to excessive, deferred, disordered, or inconsistent spatial and spatiotem-
poral information [21, 188, 258]. Third, IoT devices are diverse and may use different positioning
technologies, having the effect that the generated spatial information may be heterogeneous and
may have incompatible formats, resolutions, and semantics [193, 230].

Since SID is a vital resource that drives spatial applications, addressing its quality issues is of
high significance—in some cases, it is even essential. Not surprisingly, many recent studies [118,
154, 188, 264, 268] focus on SID quality issues. All such works can be divided into two overall lines
of study: some studies aim to control or enhance the quality of SID, while other studies focus on
querying, analyses, and decision-making over low-quality SID. These two lines of work, namely
SID quality management and exploitation of low-quality SID, are the focus of this survey.



2.1Data Quality Dimensions for SID 4.1 Queries

2.2 Characteristics and Quality Issues of SID 4.2 Analyses

2.3 DQ Technologies on SID 4.3 Decision-making

Section 1 pecrioni Sl on & Sec‘t '0",4 Section 5 Section 6
Introduction AT Quality e ool Prospects Conclusion
Quality of SID Management of SID Low-quality SID P

5.1 Emerging Trends

3.7 Location Refinement

. —— . 5.2 Future Directions
3.2 Uncertainty Elimination, 3.3 Outlier S —

Detection, 3.4 Fault Correction

3.5 Data Integration, 3.6 Data Reduction

Fig. 1. The survey organization.

Note also the notion of Wireless Sensor Network (WSN) that relates to IoT: a WSN denotes a
wirelessly interconnected group of sensors that are separate from the Internet [98]. Within the
purview of WSNs, a range of technologies have been invented that are also relevant to IoT. Thus,
this survey also covers WSN data quality technologies [18, 63, 106, 197, 248, 251].

Specifically, the survey concerns the intersection of three research areas, namely IoT, data quality,
and spatial computing. Table 1 summarizes the scope and technical concerns of the most recent
related surveys on IoT, data quality (DQ), and spatial computing (SC). Some existing surveys focus
on synergies between two of the three areas, covering topics such as IoT data quality, spatial
data quality, and IoT-enabled spatial applications. However, no existing surveys integrate all three
research areas in their coverage. Next, some surveys cover spatial computing partially and address
selected topics in spatial computing. In particular, Mahdavinejad et al. [152] present machine
learning methods related to challenges presented by big IoT data, using smart cities as the main
use case. Their study does not focus on DQ technologies. Also, Chen et al. [47] survey solutions
for improving the robustness, security, and privacy of the Location-based Services in IoT systems,
and Li et al. [122] review IoT-signal-based localization systems, covering localization error sources
and mitigation methods. These two studies concern IoT-based localization algorithms—they do not
cover a broader range of quality management techniques for SID, and nor do they consider the
exploitation of low-quality SID.

In contrast to existing surveys, this survey aims to provide unique insights to practitioners who
intend to develop IoT-enabled spatial applications and to researchers who are interested in IoT DQ
aspects, from the perspective of quality management and quality-aware data exploitation.

The organization of this survey is illustrated in Fig. 1.

e Section 2 provides an overview of the quality aspects of SID, covering data quality dimensions
related to SID, characteristics and quality issues of SID, and DQ technologies relevant to SID.

e Section 3 presents key classical quality management techniques for SID, encompassing the
tasks of location refinement, uncertainty elimination, outlier removal, fault correction, data
integration, and data reduction.

o Section 4 reviews the most recent works on the exploitation of low-quality SID, encompassing
the tasks of querying, analyses, and decision-making.

e Section 5 discusses emerging trends and open issues related to SID quality, identifying
research directions that are important in order to enable efficient, effective, and innovative
quality-aware SID computing.

e Section 6 concludes the paper.



2 SPATIAL 10T DATA QUALITY FRAMEWORK

Data Quality (DQ) refers to how well data satisfies the purpose of data consumption [95, 175]. In
this sense, each data consumer has her/his own DQ criteria for capturing how the data fits her/his
task at hand. These criteria are also called DQ dimensions [95], and they encompass aspects such as
accuracy, completeness, and interpretability. In Section 2.1, we introduce a set of DQ dimensions
specific to SID. Given these specific DQ dimensions, we analyze the characteristics of spatial data
in the IoT context and identify associated SID quality issues in Section 2.2. Finally, we present DQ
technologies for SID from both task and technique perspectives in Section 2.3.

2.1 Data Quality Dimensions for SID

Applications are often associated with particular sets of DQ dimensions that take into account their
particular data consumption purposes. DQ dimensions differ across application areas or scenarios
even if they have the same name. For example, timeliness is considered as “the most recent time
when the data is updated” for a snapshot query processing task [112], and as “the average of
the difference between the recording time and current processing time” in a timestamp cleaning
task [188]. In this survey, we will investigate the most important data consumption requirements in
IoT-enabled spatial applications, and based on this, we analyze and define the major DQ dimensions
of spatial data in the IoT context.

SID, including trajectories and STID, is regarded as observations of some real phenomenon or
process through IoT facilities, which can be exploited as input to spatial queries, analyses, decision-
making, and so on. There is inevitably a difference between the true states of the underlying
phenomena or processes and the measurements due to imperfections in the IoT technologies [95,
113, 131]. IoT deployments generally need to observe a variety of constraints, e.g., cost constraints,
and application-level restrictions such as throughput, energy consumption, and privacy policy [95].
From a high-level perspective, quality requirements to SID posed by the consuming IoT-enabled
applications span the following aspects.

e SID should be accurate and reliable. The most basic attribute of SID is location. If there is a
deviation in the location, the information it points to is inaccurate and unreliable, which may
lead to unsound and untrustworthy query, analysis, and decision-making results [47, 117].

e SID should be comprehensive and informative. SID serves as the medium to perceive the
environment, while IoT digitization results in a certain degree of information loss in the SID.
Spatial computing tasks benefit from complete and meaningful SID that preserves critical
information on the environment [158, 208].

e SID should be easy to use. SID is inherently high-speed, dynamic, and geo-distributed, which
makes large-scale exploitation difficult. SID should be ready at hand such that computing
with large-scale SID can be realized readily and at a low cost. Moreover, SID is generally
collected from heterogeneous devices and therefore differs in format, spatial resolution, and
semantics. SID is expected to be simple in format, compatible, and human-readable [175, 187].

In accordance with the above three aspects, we list major DQ dimensions for SID and their
meanings in Table 2. As the notion of data quality is open-ended, the DQ dimensions in Table 2 are
non-exhaustive. Also, as mentioned above, DQ dimensions with the same name may carry different
definitions in different applications. Nevertheless, the DQ dimensions to a large extent reflect the
major DQ requirements of IoT-enabled spatial applications.

2.2 Characteristics and Quality Issues of SID

IoT devices continuously monitor variables of interest (e.g., position [186], check-in behavior [203],
air quality [130], or electricity consumption [9, 57]) in specific spatial ranges using some form



Table 2. DQ Dimensions Specific to SID

Requirements ‘ DQ Dimension ‘ Meaning

Precision The degree to which repeated data values, e.g., measurements, are similar, which
Accurate and . .
Reliable can be modeled as the reciprocal of variance.
Accuracy The maximum absolute error € such that all data values fall in the interval [u —
€, i + €], where p refers to the true value [95].
Consistency The degree to which the available data from different sources match and support
each other in a defined spatiotemporal range.
Time Sparsity The maximum time interval between two consecutive data items.
Comprehensive | Space Coverage | The ratio of the area that embraces the location measurements to the area that
and Informative the IoT system is expected to cover.
Completeness The ratio of observed items to the missing ones in a spatiotemporal range.
Redundancy The ratio of non-distinct items to all items in a spatiotemporal range.
Latency The average difference between the time when data is generated and processed.
Staleness The difference between the current time and the last time of update.
Data Volume The number of data items participating in a computing task.
Easy to use - - g
Truth Volume The number of data items having the corresponding true values.
Resolution The level of detail of the information that can be provided to a computing task.
Interpretability | The degree to which the format and meaning of the data items are clear and
understandable for a computing task.

of localization. As a result, SID is often associated with specific characteristics. Identifying these
characteristics helps find the causes of quality issues. Also, some SID characteristics in turn help
address DQ issues. Table 3 summarizes the SID characteristics and their resulting quality issues.
In particular, some SID characteristics can be regarded as omnipresent in IoT settings (termed ToT-
omnipresent’), while others are mainly brought about by spatial aspects (termed ‘Spatial-specific’).
Moreover, a characteristic and its resulting quality issues can relate to the spatial attribute or the
thematic attribute of SID. According to our definition in Section 1, trajectories and STID have spatial
attributes, while thematic attributes (i.e., general data values) only exist in STID. As an example,
the characteristic temporally discrete can be reflected in both spatial and thematic attributes. Also,
temporal discreteness tends to yield increased time sparsity, lower completeness, and increased
staleness as fewer data points are seen across time.

One notable property of SID is the inherent dependencies among data items in terms of their
spatial and temporal aspects. As described in Table 3, the characteristics spatially autocorrelated
and spatially anisotropic characterize spatial dependencies, Markovian characterizes temporal
dependencies, and varying smoothly characterizes both spatial and temporal dependencies. As will
be introduced in Section 2.3, techniques for the modeling of spatiotemporal dependencies can help
to address DQ issues in SID.

2.3 DQ Technologies on SID

We categorize DQ technologies according to two facets in Fig. 2. From the system architecture
perspective, we divide the technologies according to the tasks distributed to different IoT layers
(see Section 2.3.1). From the technique perspective, we differentiate among technologies in terms
of their data modeling methods, learning paradigms, and computing modes (see Section 2.3.2).

2.3.1 Task Facet. An 10T system adopts a layered approach to organizing its data acquisition,
management, and exploitation tasks [16]. To serve spatial applications, an IoT system usually
consists of five layers as follows.



Table 3. SID Characteristics and Their Resulting Quality Issues

Reflected Attr.
Characteristic Description Quality Issues - -
Spatial | Thematic
. Device capability limitations and low precision, low
Noisy and . .
hardware failures cause data uncertainty, accuracy, low v v
erroneous . .
- noise, and faulty values [122, 191]. consistency
g Temporally The 'reporting times of data i'tems are not low time sparsity,
& | discrete continuous due to the sampling strategy low completeness, v v
é of the IoT devices [121, 281]. high staleness
3 Data stems from IoT devices scattered low consistenc
5 | Decentralized over the physical space, and these devices’ . Y.
= . . high latency, v v
and heterogeneous | generation mechanisms and data formats . e
low interpretability
vary [197].
Data is reported continuously and is
Dynamic evolving, and data nodes disconnect low precision v v
irregularly or change strategies [259].
. Devices are connected to the IoT high redundancy,
Voluminous . . . .
. that report data in a high-frequency high latency, high v v
and duplicated i
and repetitive manner [9, 267]. data volume
Data nodes of different authorities are
Isolated and isolated from each other, and inconsistency | low consistency, v Y
conflicting is caused by differences in data handling low interpretability
methods at the nodes [170].
. Physical variables within a spatial or
Varying o -
smoothl temporal range exhibit smooth variation - v v
Y w.r.t. a particular target [95].
Markovian A data value is dependént on values ) v Y
generated at previous timestamps [95].
Locati hard t ify due to a limited
Unverifiable ocations are fard to vertty cue to a Amed |y truth volume v
volume and coverage of true values [71].
& . . Spatial attributes often exist at different low consistency,
S | Hierarchical and . . .
o X spatial scales [253]. Even symbolic low resolution, v
2« | multi-scaled L. L . .
=< localization results have this issue. low interpretability
= Localization results appear only in a fixed
& | Spatially set of positions, or the value range of the
. . . . . low space coverage v
discrete localization algorithm is non-continuous
or non-interpolable [195].
. Data observations in nearby locations
Spatially .
tend to resemble each other, instead of - N4
autocorrelated . . .
being statistically independent [92].
Spatially Spatial dependencies among data values are v
anisotropic non-uniform in different directions [92].

The perception layer manages IoT sensors that collect raw data, which involves the follow-
ing DQ tasks. 1) Hardware Reliability Control combats loss of precision, reading dropping, and
fail-dirty [14] by upgrading sensors or sensor components to ones with improved durability,
performance-per-watt, and environmental adaptability. Its main goals include precisiont, accuracyT,
and consistency? (throughout this paper, we use 1 to mean lifting and | to mean lowering). 2)
Working Mode Adjustment improves the devices’ capabilities at data acquisition. For example,
lifting (or lowering) a sensor’s sampling frequency can combat time sparseness (or duplicates). As
another example, setting a higher power mode for a wireless hotspot can expand the hotspot’s
space coverage. 3) Deployment Planning formulates the optimal deployment solution that concerns
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Fig. 2. Task and technique facets of the categorization of DQ technologies (the detailed uses of techniques in
task are presented in lower-level categorization diagrams in Sections 3 and 4).

sensor installation, reference point selection, and calibration [66, 156]. This mainly helps achieve
precisiont, accuracy?, space coveraget, latency!, and truth volume?.

The transport layer uses communication technology to enable coordination among devices
and transmission of data. This layer involves two DQ tasks. 1) Quality of Connection Control
ensures stable and flexible connectivity and interoperability among roaming devices to address
completenesst, latency|, and staleness| [11]. 2) Resource Assignment addresses effective allocation
of data, CPU, memory, and storage to IoT nodes [212], which targets latency| and staleness|. Key
enabling technologies include the computation offloading [150] and transport SDN [161].

The above technologies optimize mainly the infrastructure. In the remaining part of the survey,
we exclude these and focus on data handling for DQ at higher IoT layers.

The localization layer estimates object locations that are assigned to data, thus producing
spatial data. Here, a key DQ task is the Location Refinement (LR)—a process that accompanies or
follows the localization process to adjust initial location estimates to reduce system and random
errors. Its main goals concern precisiont, accuracyt, and resolutiont. The concrete techniques are
articulated in Section 3.1.

The pre-processing layer manages SID, involving the DQ tasks listed in Table 4. These DQ
tasks explicitly target improvements of input data quality to serve business applications better.

Unlike the DQ tasks in the pre-processing layer, the DQ tasks in the business layer aim to
ensure that the data can support the specific needs of diverse spatial applications. Concerning SID
quality, these tasks include Querying over Low-quality SID (Section 4.1), Analyses on Low-quality SID
(Section 4.2), and Decision-making Using Low-quality SID (Section 4.3). To be detailed in Section 4,
different subcategories of these tasks consider different quality issues in their utilized SID. We
therefore do not list the specific DQ goals for them here.

2.3.2 Technique Facet. We summarize the techniques that address DQ issues from three viewpoints.

From the viewpoint of data modeling, the following techniques construct different data represen-

tations or models according to the specific characteristics of the data.

e Probabilistic Modeling combats uncertainty and noise by introducing probabilistic representations
of observations [53] or results [264], this way preserving all possibilities of the target variables.
Statistical optimization methods are employed to address dynamic and complex settings [134].



Table 4. DQ Tasks in the Pre-processing Layer

DQ Task Description Main DQ Goals
Uncertainty Uses time series or batch analysis methods to a) reduce uncertain or | precisiont, completenessT,
Elimination imprecise measurements and b) impute unknown measurements at | resolutiont, and time

(Section 3.2)

unsampled points [257].

sparsity ]

Outlier Removal
(Section 3.3)

Detects and removes items in a data collection that do not conform
to their context [10].

precisionT, accuracy?, and
consistency T

Fault Correction
(Section 3.4)

Finds and repairs wrong, conflicting, or missing data values based on
comparative analyses within or between data collections [256].

accuracy?, consistencyT,
and completeness?t

Data Integration
(Section 3.5)

Obtains a unified data representation by comparing, combining, and
fusing data collections from multiple sources [22].

accuracyT, compIetenessT,
data volume?, resolutiont,
and interpretabilityt

Data Reduction
(Section 3.6)

Converts a data collection into a corrected and simplified form based
on statistical techniques, by either eliminating invalid and meaning-

data volumel, latencyl,
and redundancy|

less data or by reconstructing summary or statistical data at different
aggregation levels [207].

e Spatiotemporal Dependency Modeling derives spatiotemporal correlations from the inherent
characteristics of SID (including varying smoothly [282], Markovian [19, 226], spatially auto-
correlated [113], and spatially anisotropic [195] as introduced in Section 2.2). Spatiotemporal
dependencies are then incorporated into the handling of noise [226, 282], missing or unknown
values [113, 195], errors [19], etc.

o Spatiotemporal Regularity Modeling facilitates inference or prediction by discovering and ex-
tracting spatial and temporal regularities [110, 225, 226, 267, 273] of large-scale SID collections.
Compared with the inherent characteristics of SID, data regularity is often formed by the rules
and factors derived from the context, e.g., user preference and semantics of physical entities.

o Spatial Constraint Modeling utilizes additional spatial and motion constraints to contend with
noisy, incomplete, and faulty SID. Such constraints include, but are not limited to, the topology
of road networks [226, 281] and indoor buildings [109], maximum allowed speeds [239, 268, 282],
and predefined rules associated with locations and regions [43, 64, 264].

From a learning paradigm perspective, techniques choose appropriate schemes or strategies to
mitigate low DQ issues in learning. Due to the diversity of related techniques under development,

we give only a brief, non-exhaustive review!.

o Unsupervised Learning such as Expectation-Maximization (EM) [82], AutoEncoders (AE) [48, 89,
142, 236], and Generative Adversarial Networks (GAN) [48] can address the scarcity of labels
(ground truth data).

o Semi-supervised Learning can deal with partial availability of labels (e.g., co-training [46]) and
imbalance of labels (e.g., positive-unlabeled (PU) learning methods [40]).

o Reinforcement Learning, widely used in sequential decision-making, can deal with the incom-
pleteness [199] and dynamics [104, 192, 218] of trajectories or spatiotemporal sequences.

o Multi-task Learning [67, 164, 253, 273] and Multi-view Learning [260, 262, 272], which make full
use of data for improved overall performance, can contend with scarcity of labels, as well as bias
and heterogeneity of data during training.

o Transfer Learning [72, 245], borrowing labeled data or knowledge from related domains, can deal
with limited data availability and bias of data in a certain domain.

o Federated Learning can deal with the scarcity of data across multiple domains [105, 155] and
facilitate decentralized model training [141].

!n this survey, we do not cover the most basic, heavily used supervised learning as a specific learning paradigm.



From a computing mode viewpoint, typical computing paradigms are listed below.

o Distributed Computing [162, 231, 248, 252] distributes data and resources among different system
components, improving the throughput and overall efficiency of the system (for lower latency and
staleness) and reducing single points of failure and system errors (for increased completeness).

o Stream Computing [42, 91, 118] processes and forwards data items generated in real-time within
a time-limited window and buffer. It is an effective means to enable timely data exploitation.

e Collaborative Computing improves the performance of a computing task by coordinating multiple
computing nodes [36, 49, 263] and combing their data and intermediate computing results [264,
275]. It helps improve the consistency, completeness, and availability of SID to be exploited for a
particular task.

e Fog/Edge Computing [118, 161, 267] pushes data and algorithms to nodes that are situated where,
or near to where, data is collected, addressing the issues of latency and throughput in systems
with large amounts of data. This reduces data volumes and redundancy, as well as latency and
staleness of SID.

2.3.3  Connections between Tasks and Techniques. Referring to Fig. 2, different techniques apply to
different tasks, and some tasks may involve and assemble multiple techniques. In the following
two sections, the literature is organized from the task perspective. When reviewing existing work
related to a task, the low-level association between the applicable techniques and the particular task
is analyzed and highlighted. E.g., Fig. 3 shows how different techniques are linked to a subcategory
of location refinement technologies. Furthermore, Section A.1 in the Supplementary Material shows
the associations between the DQ tasks and the DQ techniques from a global viewpoint.

3 QUALITY MANAGEMENT OF SID

This section elaborates on selected technologies that control and improve the quality of SID
before they are exploited for business purposes, including location refinement (Section 3.1) in the
localization layer and uncertainty elimination (Section 3.2), outlier removal (Section 3.3), fault
correction (Section 3.4), data integration (Section 3.5), and data reduction (Section 3.6) in the
pre-processing layer.

3.1 Location Refinement (LR)

Given a set x of measurements from an IoT infrastructure, localization of x is performed by an
algorithm that can be modeled as a function f : X + Y that maps measurements such as x € X
to a location y € Y. Due to the inherent non-stationary and noisy nature of IoT measurements
(e.g., Wi-Fi signal strengths and RFID readings) [133], the result y can be imprecise and erroneous.
Adopting a probabilistic approach, the objective of LR is to find optimal localization results y € Y
that maximize the conditional probability P(Y | X, F, C), where F = {fy, ...} is a family of functions
each corresponding to a localization process and C refers to spatial constraints that can be utilized
for refinement. According to the specifics of the input X, we divide LR technologies into three main
categories as illustrated in Fig. 3, where dashed arrows indicate DQ techniques that have been used
widely in a DQ task or its subcategory.

In an Ensemble LR method, X refers to an individual object’s multi-variable measurements
at a single time point ¢;. Here, X = X; = {Xl(l), . ,XEM)}, where Xl.(") (1 £j £ M) is a measured
variable at t;; and the final output y = ¥; is a location estimate at time #;. The variables in X can be
measured by different sensors, including sensors of varying types. Ensemble LR aims to assemble
multiple localization results generated from x € X to output a statistically optimal result. Ensemble
LR mainly follows the idea of probabilistic modeling. We distinguish between single-source and
multi-source ensemble LR.
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Single-source ensemble LR aggregates a set of possible localization results y = {yj, ...} produced
by a single localization process f(x). Fang et al. [63] study a weighted k-nearest neighbor (WkNN)
method that determines the final location ¥ as the weighted mean of the top-k location estimates
from f(x), i.e, y = Z;‘:I w; - Y. The weight w; is modeled as the likelihood P(y; | x).

In contrast, multi-source ensemble LR involves multiple independent localization processes as
F = {f1, ...} and fuses their localization results to improve the accuracy of y. Here, F can contain
different localization algorithms such as lateration/angulation, RSSI (Received Signal Strength
Indicators) fingerprinting, and dead reckoning [133]. Each may use a different combination of
variables from X to estimate a location. Chen et al. [45] integrate results of RSSI fingerprinting
and dead reckoning that suffer from signal fluctuations and time-growing error propagation,
respectively. They use a weighted least squares (WLS) algorithm to combine linearly a fixed number
of the highest confidence fingerprinting estimates by minimizing the relative error to the true
location. The weight of a fingerprinting estimate is modeled as an exponential function related to
the credibility of the dead reckoning. Using a hierarchical procedure, Dai et al. [55] employ a deep
neural network (DNN) to generate a candidate reference location set from RSSI measurements,
followed by an improved kNN algorithm to interpolate the final result upon the candidate set.

While multi-source ensembles require multi-aspect information from a more complex deployment
setting, this also means that better location accuracy is possible than with a single-source ensemble.

In a Motion-based LR method, X refers to an individual object’s sequential measurements,
ie, X =X;n = (Xy,...,Xn), where X; (1 < i < N) can be the single-variable or multivariable
measurement observed at time #;. Accordingly, the final outputis y = (71, . . ., Jn). As the accuracy
and robustness of localization at a single time point are affected adversely by time-varying noise,
motion-based LR introduces knowledge of motion dynamics and historical measurements to improve
the current localization result over time. Generally, motion-based LR relies on the modeling of
spatiotemporal dependencies in localization sequences. Representative techniques for modeling
spatiotemporal dependencies include Bayes Filters [18, 69, 202, 229, 247], Probabilistic Graph Models
(PGM) [60, 134], and Recurrent Neural Networks (RNN) [80].

Bayes Filters sequentially estimate a dynamic system’s state (the target object’s current loca-
tion) from noisy observations by capturing the uncertainty at each time point t; as a probability
distribution P(X;). Yim et al. [247] design an Extended Kalman Filter to linearize the trilateration
results modeled with Additive White Gaussian Noise. The correlation between two consecutive
estimates is captured as a Kalman filtering process, i.e., yi+1 = Ajy; + i (1 < i < N), where A; isa
state transition matrix and y; is a system error that follows a Gaussian distribution. Assuming X;
consists of multi-source sensory data, Giovanelli et al. [69] calculate the velocity based on RSSIs
and the distances to Bluetooth hotspots based on Time-of-Flight measurements. The correlation
of the velocity and distances is captured by a second-order, linear Kalman Filter to help reduce
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noise in the localization sequence. While Kalman Filter and its variants assume linear motion and
Gaussian measurement noise, Particle Filters (PF) can make use of more sophisticated non-linear
and non-Gaussian models. Wu et al. [229] propose an improved PF to evaluate the joint posterior
P(y1.N | z1:N, u1:N) at time £y given the RSSIs z;.n and inertial mesurements u;.y from timestamps
t; to tn. Based on a sequential Monte Carlo process, they sample a set of particles g whose weight

is estimated based on the likelihoods P(z; | ygq)) and P(yg.q) | y@l, u;). This way, a particle that fits
better with RSSIs and motion dynamics is more likely to be sampled in the next timestamp. PF has
also been applied to the refinement of locations using minimalist spatial information from binary
sensor networks [18]. In this setting, binary values {—1, 1} indicate whether a device is approaching
or is moving away from an anchored sensor node. Unlike all the above studies, and assuming
unknown sensor node locations, Taylor et al. [202] propose a Bayes Filtering framework for location
tracking that simultaneously localizes and calibrates the sensor nodes.

PGMs are more suitable for scenarios where object locations are modeled as discrete and piecewise
constant states. Liu et al. [134] propose a Hidden Markov Model (S, O, A, B, 7) to fuse observations
O from smartphone sensors and WLAN signals. In particular, each hidden state s; € S corresponds
to a grid-based location; the emission probability set B = {b;(s;) = P(0; | X; = s;)} and the initial
state distribution 7 are estimated by RSSI fingerprinting algorithm; and state transition probabilities
in A are calculated and refined using motions derived from smartphone sensor data. Assuming
locations can only be at a set of predefined reference points, Dimbgen et al. [60] use a linear-chain
Conditional Random Field (CRF) for LR such that the physical connectivity of reference points in a
floorplan is captured as links between states at consecutive timestamps. The conditional probability
of states y;.n given multi-modal observations x;.n can be represented by a product of potential
functions P(y1.n | X1.N) ﬂfiz ¢(yi-1, yi, X;). Each such potential function considers the motion
between y;_; and y; as well as the reliability of result y; given x; € X;.

RNN s excel at capturing intricate sequential dependencies of observations and results. Hoang et
al. [80] study different architectures, such as Multiple-RSSI-In-Single-Location-Out (MISO) and
Multiple-RSSIs-In-Multiple-Locations-Out (MIMO), to output an optimal location at a single point
or an optimal location sequence. In the case of multiple-location output, sliding window averaging
is applied to reduce the accumulated errors. They report that a predicted-location-augmented-MISO
LSTM (long short-term memory) achieves the best robustness among different combinations of
architecture and RNN models.

Motion-based LR models all require much historical data for training. Also, motion-based LR is
difficult to implement in a decentralized computing setting. We compare the three categories of
models mentioned above. First, RNNs use more training data than PGMs and far more than Bayes
Filters. Second, RNNs often achieve relatively better performance in complex scenes. Third, PGMs
can explicitly incorporate mobility knowledge and therefore are suitable for scenarios with known
space information.

In a Collaborative LR method, X refers to multiple objects’ observations at a single time point,
ie, X = Xp = {X%,...,X°™} where O = {oy,...,0p} is the corresponding object set. In the
spirit of collaborative computing, collaborative LR optimizes the results globally as {y*, ..., y°M}.
The ideas include joint denoising [263, 271] and iterative optimization [49, 165].

Joint denoising assumes that any observed location is a combination of the actual location and
system noise. Therefore, it separates the system noise that best meets a statistical hypothesis from
collective observations to distill the actual locations. Assuming that the errors of a Convolutional
Neural Network (CNN) location estimator are Gaussian, Zhang et al. [263] use Gaussian Process
Regression to jointly adjust the coordinates of a batch of CNN-estimated locations. To handle
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non-Gaussian estimation noise, Zhang et al. [271] use Gaussian Mixture-Semidefined Programming
to optimize collective results.

Iterative optimization assumes random errors of observed locations and then reduces iteratively
the random errors of the observed locations together. Niculescu and Nath [165] propose DV-Hop
to optimize the locations of distributed target nodes based on their peer-to-peer hop counts. By
sharing hop counts between nodes in the network, they use least squares to derive the medium size
of a hop along with the unknown locations of the nodes according to the distribution of anchor
nodes (with known locations). Modeling trilateral estimates as particles, Chen and Zou [49] use
Particle Swarm Optimization (PSO) to adjust iteratively the particles’ locations based on the gains
of their location fitness to anchor nodes.

Collaborative LR requires a large number of objects (devices) for data and control coordination,
which is a challenge in IoT settings with dynamic changes in connectivity.

Remarks. Most LRs are based on probabilistic modeling. Spatiotemporal dependencies (e.g., Mar-
kovian) are utilized widely in motion-based LR, and spatial constraints can be incorporated into
Bayes Filters [229] and PGMs [60, 134]. Motion-based LR usually achieves higher accuracy compared
to ensemble and collaborative LR that refine results at a single time point. However, motion-based
LR often requires a mass of true location values (ground truth) to parameterize the model.

3.2 Uncertainty Elimination (UE)

The uncertain information subjected to UE includes imprecise measurements and unknown values
at unmeasured points (see Table 4). Fig. 4 shows UE technologies that target trajectories or STID
and indicates DQ techniques that are highly relevant to different categories of technologies.

Trajectory UE can be divided into calibration-based [115, 191], inference-based [87, 110, 121,
226, 281], and smoothing-based [31, 282] approaches.

Calibration-based approaches align noisy and incomplete trajectories with reference points or
ranges obtained from maps [191] or extracted from collective trajectory data [115, 191]. Su et
al. [191] collect different kinds of stable anchors (e.g., POIs and turning points) and align raw noisy
trajectory locations with the anchors for heterogeneous trajectory comparison. Li et al. [115] derive
smooth and continuous route skeletons over historical trajectory point clouds and consider the
local distributions of points around skeleton points to eliminate deviations. Choosing significant
and robust references is a challenge for these approaches that also have to consider updating the
references according to environmental changes.

Inference-based approaches exploit structural regularities in collective trajectories to restore
a complete path that connects all observed locations of a trajectory. Some studies utilize the
topology of road networks [87, 226, 281] or indoor spaces [110] explicitly. Wu et al. [226] recover
an optimal route R between two location-time records (I, t;) and (I, t.) based on MAP (Maximum
a Posteriori) over the posterior P(R | [, t, I, t., T), where R is a candidate route and 7 contains
all historical trajectories. The posterior is decomposed into the product of P(At | R, Is, e, t., 7) and



PR | I, e, te, 7). The former captures the likelihood of At = t, —t; over the expected time of R, and
the latter computes the posterior of a route regardless of At based on a Markov Decision Process—an
inverse reinforcement learning technique. Generalizing the MAP problem, Li et al. [110] summarize
historical trajectories at the level of indoor POIs and model the POI transition probabilities based on
an indoor connectivity graph to decode optimal sub-paths in-between. Observing that incomplete
trajectories with similar routes often complement each other, Zheng et al. [281] use multiple
trajectories to model movements between road network locations and to infer possible paths
between consecutively observed locations in a trajectory to improve completeness. Jagadeesh
and Srikanthan [87] use a Hidden Markov Model to produce suboptimal inference results in real-
time by designing a route choice model to capture the likelihoods of only a small set of path
candidates. Without using a topology explicitly, Li et al. [121] extract a network of road junctions
and estimate transition probabilities across junctions based on structural regularities learned from
massive trajectories. As a result, junctions are used as references to complete a fine-level trajectory.
Inference-based approaches require large amounts of data for learning, and their accuracy decreases
as an incomplete time interval grows.

Smoothing-based approaches utilize temporal autocorrelation of consecutive data items to miti-
gate volatility. Moving averages, exponential smoothing, and random walks are typical techniques
for time series smoothing [31, 282]. Such approaches are simple to implement, but they do not
address the randomness of movements in a specific trajectory.

An important branch of STID UE is the spatiotemporal interpolation techniques that estimate and
insert thematic values at unsampled location-time points that align with spatiotemporally nearby
sample points. In this branch, the time-interpolation-primitive® and space-interpolation-primitive
approaches have been reviewed [116]. Here, we only review approaches that interpolate thematic
values in space and time simultaneously. Such approaches can be based on shape functions [116],
inverse distance weighting (IDW) [17, 195], and Kriging [113].

Motivated by Tobler’s first law of geography [204], stating that things close to each other in
space-time are more alike than more distant things, Li et al. [116] model a shape function with
different time scales to interpolate PM2.5 measures. Appice et al. [17] extract prominent data trends
and geographically-aware station interactions to approximate observed data in sensor networks,
and they further infer missing data based on IDW. Susanto et al. [195] propose distribution-based
distance weighting, where nearby data variations are considered to produce distributions (either
Gaussian, Lorentzian, or Laplacian) for weight computation. Li et al. [113] use Kriging to predict
PM2.5 distributions such that values at unsampled points can be determined by the values and
weights of nearby sample points.

The performance of the interpolation techniques decreases with the expansion of the spatiotem-
poral range to be covered, and data (with ground truth) needs to be pre-analyzed for selecting an
appropriate interpolation model.

Recently, data fusion methods have been considered for reducing measurement uncertainty in
STID. Okafor et al. [169] employ feature selection to analyze factors that affect the accuracy of
low-cost environmental monitoring sensors and introduce additional environmental features such
as temperature and relative humidity for training measurement calibration models. One challenge
in such data fusion-based UE approaches is how to find additional relevant and reliable data sources.

Remarks. Calibration-based and inference-based UE approaches both make use of spatial con-
straints and collective trajectories. The former identifies reference objects while the latter extracts
regularities from incomplete trajectories having similar temporal and spatial conditions. Smoothing-
based UE is based on temporal dependencies (i.e., varying smoothly and Markovian) of trajectories,

2Time series smoothing [31] on the thematic values of STID can be regarded as a time-interpolation-primitive approach.
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which can be integrated easily with stream computing and fog/edge computing techniques to
improve efficiency. Interpolation is based on spatiotemporal dependencies characterized as being
varying smoothly, spatially autocorrelated, and spatially anisotropic (see Table 3).

3.3 Outlier Removal (OR)
We consider OR technologies for trajectories and STID separately, as indicated in Fig. 5.

Trajectory Point OR aims to remove each location point that is significantly different from its
contextual points and does not accord with the expected normal mobility behavior underlying the
trajectory. Note that removing point outliers is different from trajectory outlier detection [42, 132,
142, 154] that identifies anomalous trajectories. We consider three subcategories.

Constraint-based OR [239, 282] detects abnormal points that violate mobility constraints based
on neighborhood information such as a maximum allowed velocity. Such approaches are simple to
implement, but they do not contend well with dynamic and noisy trajectories.

Statistics-based OR identifies anomalous points based on statistical profiling of one trajectory [171]
or a collection of trajectories [198]. Patil et al. [171] propose a Z-test-based anomaly detection
method using a combination of privacy-insensitive information such as synchronized Euclidean
distance (SED) [159], velocity, and acceleration. Tang et al. [198] apply Adaptive Density Optimiza-
tion to a set of vehicle trajectories, in order to find low-density points that are likely to deviate
from the roads as revealed by dense location points. Due to the reliance on statistics over historical
data, these approaches do not work in scenarios with constraints on the available historical data.

Prediction-based OR [255, 256] identifies a value as an outlier if it differs from the value predicted
from historical data. Outliers are then repaired with the predicted values. Zhang et al. [255]
study likelihood-based repair over sequential data (e.g., trajectories), in which speed changes are
modeled as distributions and a repaired sequence is found based on the maximum likelihood
of the distributions. Assuming that some true values are available, Zhang et al. [256] integrate
iterative minimum repair with an ARX model (AutoRegressive model with eXogenous inputs).
In particular, high confidence repairs generated by ARX in previous iterations guide repairs in
subsequent iterations. The key objective of these approaches is to achieve accurate predictions. To
achieve that, they rely on trustworthy input data and regularly updated models.

STID OR considers three types of STID outliers, namely spatial outliers (outliers w.r.t. their
spatial neighbors), temporal outliers (outliers w.r.t. their temporal neighbors), and spatiotemporal
outliers (an item whose thematic attribute value deviates significantly from those of other items
in its spatial and temporal neighborhoods). Trajectory point outliers can be regarded as a special
case of temporal outliers. Therefore, the three categories of trajectory point OR covered above also
apply to temporal outliers. Systematic reviews of temporal OR are available [30, 75].
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Aggarwal [10] reviews spatial and then spatiotemporal OR using spatial OR as a fundamental
step. Aggarwal [10] also covers the close relationship between temporal OR and spatial OR when
the temporal and spatial attributes are contextual attributes (as opposed to thematic attributes)
in STID. In this sense, statistics-based and prediction-based approaches used widely in temporal
OR also apply to spatial OR. Detecting pure spatial outliers, Zheng et al. [277] utilize both spatial
and non-spatial contextual attributes to identify meaningful neighbors. To deal with heterogeneity
and different scales of contextual attributes, metric learning is applied to effectively measuring the
scores of spatial outliers.

In a classic study of spatiotemporal OR based on neighborhoods, Birant and Kut [29] consider the
density of neighborhoods to identify spatial and temporal outliers and then combine the result to
provide spatiotemporal outliers. Neighborhood-based approaches can be implemented when data
is only partially available. However, the less neighborhood information that is available, the lower
the effectiveness. Also, the decoupling of spatial and temporal aspects yields suboptimal results.
In a classic set-theoretical study, Albanese et al. [15] utilize the concept of rough set to define a
spatiotemporal outlier in terms of lower and upper approximations. Compared to neighborhood-
based approaches, set theory-based approaches require holistic data and are more suitable for
simple data attributes.

Remarks. Probabilistic modeling [171, 239, 255], spatiotemporal dependencies [29, 277] and reg-
ularity [255, 256], and spatial constraints [282] have been used widely in OR techniques. Some
works [29, 255] follow the unsupervised learning paradigm. Temporal OR including the constraint-
based approaches [239, 282] and prediction-based approaches [255, 256] can be implemented in a
stream computing fashion.

3.4 Fault Correction (FC)
As illustrated in Fig. 6, we next present FC technologies for symbolic trajectories and STID.

Symbolic Trajectory FC repairs false negatives (FNs) and false positives (FPs) in symbolic
trajectories. Unlike trajectories captured as geometric point time series, symbolic trajectories are seen
in RFID, Infrared, and Bluetooth tracking scenarios where each location of an object is represented
as the ID of the sensor that detected that object at that time [146]. In symbolic trajectories, FNs
(dropped readings) [19, 20, 43, 64, 88] occur when a sensor fails to detect an object, while FPs
(cross readings) [19, 21, 43, 64] occur when an object is unexpectedly detected by multiple sensors
simultaneously (considering that the detection ranges of sensors are disjoint).

In general, symbolic trajectory FC technologies use probabilistic modeling to identify and
repair faults. Moreover, these technologies consider spatiotemporal regularities of interactions
between sensors and objects [19-21, 43, 64, 88], spatiotemporal dependencies among records
in a trajectory [19, 43, 64, 88], and spatial constraints due to the sensor deployment and space
structure [19-21, 43, 64].



Jeffery et al. [88] fix dropped readings based on a declarative, adaptive smoothing filter named
SMUREF, which consists of binomial sampling for per-tag cleaning and 7-estimators for multi-tag
cleaning. Chen et al. [43] utilize duplicate readings, the prior data distributions and FN rates of
readers, and the maximal capacity of zones to capture the likelihood P(z;; | h;), where z;; € {0, 1}
indicates whether reader j reports object o; and h; is the zone where object o; is actually in. Fazzinga
et al. [64] embed constraints of direct unreachability, travel time, and latency into the modeling
of spatiotemporal dependencies, and they identify the trajectory with the highest conditional
probability. Focusing on integrity constraints implied by a sensor deployment, Baba et al. design
a distance-aware graph [21] and a probabilistic graph [20] to handle FPs and FNs, respectively.
Baba et al. [19] further utilize a multivariate HMM to capture the data uncertainty and correlation
between object locations and RFID readings from historical data.

STID FC repairs faulty thematic values [98, 178, 184] or imprecise timestamps [91, 138, 157,
162, 188]. Pumpichet et al. [178] employ a belief-based approach to identify a group of helpful
neighboring sensors based on the consistency of their data streams, estimating replacement values
for dirty readings based on the time and distance over the identified group. Kuemper et al. [98]
correct faults in IoT data sources. In particular, real-time information-quality vectors are generated
for data sources based on cross-validation of heterogeneous sensory information. When these
vectors indicate a provisionally unreliable data source, such a source is replaced by an alternate
virtual data source that is created based on spatiotemporal analysis and interpolation methods.
Providing a centralized data validation method, Sartori et al. [184] measure the Pearson correlation
coefficients between the most recent reading sequences of adjacent sensors and find repairs for
missing and anomalous readings from a single sensor based on the readings from correlated sensors.

Imprecise timestamps lead to staleness/uncertainty [157, 188] or disorder [91, 138, 162]. To find
the optimal result among different combinations of possible timestamp repairs, Song et al. [188]
adopt heuristics and linear programming relaxation over the provenance chain of unchanged
nodes and the nodes to be repaired. Milani et al. [157] propose a graphical model to capture spatial
and temporal dependencies in past update patterns. They also propose a dynamic probabilistic
relational model to output repairs for stale cells via Maximum a Posteriori estimation. Mutschler and
Philippsen [162] present a distributed and adaptive K-slack® for disorder processing on high-speed
event streams. Aiming for efficient sliding window aggregate queries over out-of-order streams, Ji
et al. [91] extend K-slack by introducing a window-based metric for measuring the aggregation
quality. To address the latency of K-slack in heterogeneous networks, Liu et al. [138] propose
aggressive and conservative strategies to handle unexpected and prevalent disorders, respectively.

Remarks. Symbolic trajectory FC [19, 43, 88] requires historical data to build models for use when
cleaning incoming data. K-slack for disorder resolution [91, 138, 162] can be implemented in a
stream and/or distributed computing mode.

3.5 Data Integration (DI)

In Fig. 7, we divide DI technologies for SID into two categories, namely semantic DI and non-
semantic DI. The former involves semantic and comprehensible data sources and concerns their
integration with raw SID to enrich the interpretability of SID. Without semantic aspects, the latter
compares and combines multi-angle spatiotemporal observations to eliminate inconsistencies and
to enhance the reliability of the integrated data.

Semantic DI technologies concern trajectories [109, 110, 125, 126, 167, 225, 239] or STID [22,
23, 25, 149, 230].

3 K-slack buffers the arriving data for K time units for reordering.
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Semantic DI for trajectories aims to annotate raw location traces with concepts or complemen-
tary knowledge at particular timestamps or during time intervals, facilitating direct, concise, and
explainable exploitation of trajectories. According to the content to be associated with locations,
they can be divided into knowledge-oriented technologies [167, 225] and event-oriented technolo-
gies [109, 110, 125, 126, 239]. The former annotate a trajectory point or segment with structured
tuples [167] or human-readable text/keyword [225]. Nogueira et al. [167] propose an ontology-based
framework to enrich GPS traces with Linked Open Data. Wu et al. [225] annotate location records
with keywords extracted from geo-referenced social media data using Kernel Density Estimation.
The querying of trajectories enhanced with keyword-like events, termed activity trajectories, has
also been studied [190, 278]. Event-oriented technologies [109, 110, 125, 126, 224, 239] annotate
trajectory points or segments with event labels to form sequences of application-specific events.
Liao et al. [125] infer activity types and significant places from personal location traces using a
hierarchical CRF (conditional random field). They further extend the hierarchical CRF to model
the mapping from GPS data to transportation concepts such as destination and transportation
mode [126]. Yan et al. [239] use a Hidden Markov Model to annotate trajectories with stops and POI
categories on a grid-based map. By analyzing spatiotemporal regularity, Wu and Li [224] facilitate
personalized POI category annotation of personal GPS records. Li et al. [110] annotate noisy Wi-Fi
positioning data with sequences of semantic mobility triples of the form (time, indoor region,
mobility pattern), using density-based partitioning for event detection and weighted estimates of
relevant positioning records for region matching. Li et al. [109] further propose a coupled CRF to
model indoor spatial constraints as well as probabilistic dependencies among positioning records,
regions, and events. As a result, multivariate annotations are decoded with the highest plausibility.

Semantic DI for STID enriches spatial data infrastructures (SDI) with standardized [23, 230] or
application-specific [22, 25, 149] geo-semantic meta information. Wu et al. [230] propose a Semantic-
Web-of-Things framework that combines a Semantic Sensor Network (SSN) ontology with other
domain-specific semantics extracted from IoT resources based on entity linking. Bajaj et al. [23]
categorize existing ontologies required for annotating different aspects (4W1H: What, When, Who,
Where, and How) of IoT data acquisition and access. Barnaghi et al. [25] design a lightweight
semantic modeling framework to annotate spatial, temporal, and thematic attributes of sensor
stream data, using geohashing and clustering to distribute streams to different repositories at
different scales. To extract interpretable knowledge from continuous and heterogeneous IoT data
streams, Maarala et al. [149] design a mobile reasoner that uses geographical partitioning and brings
data processing closer to the data sources. Badidi and Maheswaran [22] design a DI architecture
for IoT urban data by combining semantic technologies, edge computing, and cloud computing.



Existing studies assume that the semantics to be integrated is not updated and thus do not
address real-world dynamically evolving semantics, which thus remains an open problem.

Non-semantic DI technologies can be divided into three cases: trajectory+trajectory [93, 173,
260], trajectory+STID [261], and STID+STID [51, 283].

Current ubiquitous location systems [14, 186] are constructed with different infrastructures and
algorithms, producing trajectories in diverse formats [173], resolutions [260], or ID systems [93].
Trajectory+trajectory aims to generate a unified representation for such different trajectories. Peixoto
et al. [173] propose the Trajectory Data Description Format (TDDF) to enable the conversion
between formats. TDDF can capture statistics to enable efficient data management. To model real-
time traffic, Zhang et al. [260] propose a convex multi-view learning method to quantify biases of
trajectories and a context-aware tensor decomposition method to calibrate incomplete trajectories at
different spatial granularities. To identify the same moving entity that has different IDs in different
trajectory datasets, Jin et al. [93] extract trajectory signatures based on four representation strategies
(sequential, temporal, spatial, and spatiotemporal) and two quantitative criteria (commonality and
unicity) and conduct kNN search over these signatures.

Trajectory+STID attaches spatial or spatiotemporal measurements to points or segments of
location traces based on similarities of their spatial or temporal attributes. Zhang et al. [261] propose
a DI architecture to analyze real-time mobility patterns based on correlations and divergences in
multi-source urban IoT data.

STID+STID fuses multi-source spatiotemporal measurements based on their spatial and temporal
commonality. Cheng et al. [51] develop a spatial and temporal nonlocal filter-based fusion model
to enhance both the spatial resolution and temporal frequency of remote sensing data. Focusing
on how different approaches utilize spatial and temporal dependencies of data, Zhu et al. [283]
provide a systematic review of spatiotemporal fusion of multi-source remote sensing data.

In addition to these data pre-processing technologies that integrate multi-source SID to serve busi-
ness needs, a popular line of research constructs end-to-end models that learn and fuse multi-source
data to serve business needs directly. The relevant techniques, such as multi-task learning [164]
and multi-view learning [89, 262, 269, 272], are detailed in Section 4.3.

Remarks. Semantic DI for trajectories often exploits spatiotemporal data regularity incurred by
geo-semantics (e.g., POI category [125, 239], indoor or road network constraints [109, 110, 126],
and personal preferences [225]). To efficiently assign semantics to data at the IoT far end, edge
computing [22, 149] and stream computing [25] have been used in semantic DI for STID. Non-
semantic DI [93, 261, 283] utilizes mainly the spatiotemporal dependencies in data.

3.6 Data Reduction (DR)

DR aims to improve throughput and computing efficiency in general while minimizing the loss of
information as seen from the business level. A categorization in the SID context is shown in Fig. 8.
We proceed to cover technologies for trajectory compression and STID reduction in turn.

Trajectory Compression compacts either raw trajectories [33, 103, 128, 136, 137, 144, 159, 160,
275] or network-constrained and map-matched trajectories [41, 78, 97, 118, 119, 177, 243]. Each
category can be further divided into online and offline approaches. The related concept of trajectory
simplification [33, 103, 128, 136, 137, 144, 159, 160] can be regarded as a special form of compression.
However, it focuses on eliminating trajectory points and does not consider compression means such
as binary encoding. A mainstream technology for trajectory simplification is the error-bounded
line simplification algorithms [129].

Raw Trajectory Compression. In the offline setting, all trajectory points are accessible during
compression. Cao et al. [33] study trajectory compression based on line simplification. Considering
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different approximation distances for line simplification, this study considers the soundness concept
of whether the answer to a query over approximated trajectories is error-bounded. Moreover, this
study considers the aging of trajectories in compression, the idea being to allow increasingly coarse
approximation as time elapses. Intending to minimize direction-aware distances with a fixed storage
budget, Long et al. [144] study direction-preserving trajectory simplification (DPTS) using dynamic
programming and binary search. They also design approximate solutions to a dual form of DPTS,
i.e., maximizing the span of the minimum covering angular ranges of all line segments. Based
on references extracted from collective trajectories, Zhao et al. [275] use greedy algorithms and
dynamic programming algorithms to achieve optimal compression among massive combinations
of references for resembling a trajectory.

Lange et al. [103] study optimal line simplification for reducing trajectory data in the context of
online tracking of trajectories of moving objects in sensor networks. Subsequent online trajectory
compression has been formulated as a Min-Error problem, where the aim is to minimize the
compression error while achieving a compression ratio that satisfies a given threshold; or conversely,
as the problem of maximizing the compression ratio while satisfying a given compression error
threshold [136, 137]. Assuming a fixed storage budget, Muckell et al. [159] propose the SQUISH
method that processes incoming points one by one to achieve a final compression ratio A that
minimizes the Synchronized Euclidean Distance (SED), defined as the sum of Euclidean distances
between the same-time positions on two trajectories (the distances between concurrent trajectory
positions have been investigated earlier on [33]). The extended SQUISH method [160] allows a
user-specified threshold p for the SED error. Liu et al. [136] propose a Bounded Quadrant System
(BQS) that bounds each incoming point by a convex hull in a virtual coordinate system to enable
efficient compression error evaluation. They further offer normal, fast, and progressive versions
of the BQS algorithm [137] to adjust the storage budget and compress trajectories with different
error tolerances subject to trajectory aging [33]. Based on the SED error, Lin et al. [128] develop a
spatiotemporal cone intersection-based algorithm to check trajectory points in O(1) time. Their
simplification allows interpolated data points in its outputs. Recently, Wang et al. [218] adopt
reinforcement learning to build online point dropping strategies for different error measures; this
also works in offline mode.

Network-constrained Trajectory Compression. In the offline setting, road network constraints
are considered globally. Popa et al. [177] discuss the limitations of 2D compression methods for
compressing in-network trajectories in road network settings. They propose an extended data model
and a network partitioning algorithm to support error-bounded in-network trajectory compression
based on line simplification. Han et al. [78] propose a framework that decomposes trajectories into
spatial paths and temporal sequences and performs in parallel lossless spatial path compression
and lossy, but error-bounded, temporal sequence compression. Yang et al. [243] study the TED
representation, where a trajectory is represented by a spatial entry path (E), distances (D) that



locations appear in the E, and a time flag sequence (T) to indicate a trajectory’s presence at an E
edge at a certain time. Koide et al. [97] summarize trajectories as sequences of road edges based
on the FM-index (a compressed full-text substring index). Focusing on uncertain trajectories, Li et
al. [119] improve TED by considering variations in sample intervals and also generate corresponding
referential representations (and binary representations). Other than reducing trajectories on road
networks, a map generalization process simplifies the geographical data within a map of a certain
scale without degrading the readability of information [223].

In an online fashion, Chen et al. [41] calculate the heading of incoming GPS points and compact
the data based on heading changes at intersections. Li et al. [118] propose a real-time compression
framework, in which referential trajectory representations are built by the selection, deletion, and
rewriting operators on edge servers and sent to cloud servers for querying based on a cost-reducing
data transmission scheme.

To sum up, dynamically adjusting compression strategies based on data dynamics and reducing
data volumes as early as possible on edge devices are directions for trajectory compression to be
further strengthened in IoT scenarios.

STID Reduction can be divided into compression-based [9, 57, 106, 201, 207] and prediction-
based [34, 197, 248, 267] approaches.

Compression-based approaches can be divided further into lossless and lossy ones. Lossless
compression [9, 201] usually works in batch mode and is suitable for applications that demand
accuracy. Abuadbba et al. [9] use Gaussian approximation to reduce smart meter readings such
that only the margin space between the approximated and actual readings is losslessly compressed.
Tate [201] uses Golomb-Rice codes to compress phasor angle data by considering the correlations
between the phasor angles of different sensory units. In contrast, lossy compression [57, 106, 207]
achieves a higher compression ratio with some precision loss. To deal with multimodal measurement
data collected from Wireless Sensor Networks, Li et al. [106] extend the lossy stream compression
method Lightweight Temporal Compression from 1D to ND by detecting N-ball intersections.
Considering data reconstruction based on a reduced volume of transmitted data, de Souza et al. [57]
apply Singular Value Decomposition to lossy data compression in smart distribution systems.
Tripathi et al. [207] devise an adaptive data reduction algorithm based on compressive sampling
and Gaussian Mixture Model-based quality assessment to reduce smart meter data transmission.

Prediction-based approaches [34, 197, 248, 267] are mostly used to reduce the data volume of
communication between IoT nodes. Data can be dropped if the error of a predicted value is within
an acceptable range. Carvalho et al. [34] deploy a linear regression model at each node and check the
prediction consistency between spatially neighboring nodes. Data is transmitted only if inconsistent
predictions exist. Instead of using linear regression for multivariate data, Yin et al. [248] use a
Kalman Filter to predict future values for univariate readings. Spatial correlation is also utilized to
redistribute energy consumption within a cluster of neighbors. Tan and Wu [197] predict reading
values both at the source and sink based on a hierarchical Least Mean Square adaptive filter. Sensor
nodes are requested only to send readings that deviate from the prediction by an error budget.
Zhang et al. [267] combine CNN and LSTM models at edge devices for event prediction, and only
the data with events as predicted true is transmitted.

Compression-based approaches fit well in batch processing scenarios, while prediction-based
approaches are challenged by the robustness and timeliness of prediction models.

Remarks. DR technologies for trajectories and STID mostly utilize spatiotemporal data dependen-
cies. Online trajectory compression [41, 128, 136, 137, 160] fits well with stream computing. Some
prediction-based DR for STID [34, 267] builds machine learning models based on spatiotemporal
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regularity. Edge computing [197, 267] and distributed computing [34, 57, 248] techniques have been
explored to reduce data volumes at the IoT edge devices.

4 EXPLOITATION OF LOW-QUALITY SID

This section covers techniques that exploit existing SID of low quality to fulfill various business
purposes, including queries (Section 4.1), analyses (Section 4.2), and decision-making (Section 4.3).

4.1 Queries over Low-quality SID

A categorization of queries over low-quality SID is shown in Fig. 9. As three major obstacles to
effective and efficient SID query processing, the uncertainty, dynamics, and decentralization of
data are discussed in Sections 4.1.1, 4.1.2, and 4.1.3, respectively.

4.1.1 Queries over Uncertain SID. Location uncertainty is a major issue in spatial queries [238],
for which probabilistic modeling techniques are exploited widely. In this setting, query processing
techniques estimate upper and lower bounds of query objects based on probability models to enable
priority-oriented processing and object pruning. A taxonomy of probabilistic spatial queries is
available [53], and a recent survey [284] categorizes the existing queries over uncertain spatial
data according to query types. In contrast, we categorize query processing techniques based on the
type of location uncertainty they handle in the context of IoT-based localization/tracking, namely
the uncertainty caused by inaccuracy of localization algorithms and that caused by the discrete
sampling of devices [176].

To handle the uncertainty caused by location inaccuracy, an object’s location /; at a single
time point ¢; is usually described as a probability density function (pdf) f(I;, ¢;), which occurs in
continuous and discrete cases:

o Continuous Case. A closed-form distribution, satisfying fl_eur fi,t;)dl; = 1*and VI ¢ ur (f (I, t;)

= 0), where ur is a closed uncertainty region that minimally covers all possible object locations;
e Discrete Case. A set of instances (samples) s; with corresponding occurrence probabilities p;,

formally f(l;, t;) = {(s1,p1), - - ., (SN, pn)} having Zj]\il pj =1
Table 5 further differentiates existing studies according to their query types.

4A general case is /l-eurf(li’ t;)dl; <1 where /I-Eurf(li’ t;)dl; < 1implements existential uncertainty [56, 213], i.e., an
1 1

object’s overall existence is indicated by a probability value.
SReference [238] finds a subset of O that is covered by O’s convex-hull with probability above a given threshold.
%It is the ranking version of a probabilistic spatial query that returns m objects with the highest probabilities.
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Table 5. Selected Queries over Uncertainty Caused by Positioning Inaccuracy

Query Types Continuous Case  Discrete Case
NN (Nearest Neighbor) and kNN Queries  [28, 52, 54, 206] [232]

Range Queries [200, 220] [232, 238]°
Ranking Queries [56]° [84, 254]
Reverse NN Queries [124] [27,39]
Skyline Queries [211] [172, 266]
Range Aggregate Queries [139, 270] [270]
Contact Similarity Queries and Joins [26, 213] [233]

To handle the uncertainty caused by discrete sampling, a moving object o’s location(s) at
unsampled time points is modeled by a distribution that is referenced to o’s sampled, known
location(s). The distribution can be modeled to infer the location at a single time point or the
locations across a time interval. The uncertainty models can also be applied during pre-processing
to perform spatial interpolation of original data.

Given an observed location [, at time ¢, and a maximum object speed vy, the possible object
locations at a future timestamp ¢ > ¢, belong to a circular uncertainty region O(lc, Umax - (tf — tc))
centered at /. with radius vy - (tr — tc), following a uniform distribution [146, 240, 241] or a
Gaussian distribution [176], sometimes with a distance-decaying effect [112]. Based on the circular
region modeling, the possible locations at a time t, between ¢, and ¢, can be further reduced to the
intersection of the two circular regions O(lg, Umax * (tx — tc)) and O(lp, Umax - (8 — £4)), called a
lens [176]. Additional space constraints such as indoor topology [112, 146, 240, 241] can be utilized
to further reduce the circular region or lens. Different from modeling circular uncertainty region,
the future location can be given by linear dead reckoning based on velocity and direction [86, 103].
Thus, given a velocity vector @, the location at time t (fr > t.) is obtained as I[p = I + 0 - (ty — tc).

Sometimes, queries require knowing possible locations across a small time interval or the entire
duration of a trajectory. To this end, observed locations at multiple timestamps {(I1, t1), . . ., (IN, IN))
are utilized. The expected location I’ at any time ¢’ € [t,, t;] between two consecutively reported
locations can be obtained using linear interpolation, and the corresponding uncertainty region is a
circular region centered at I’ and with a predefined radius [206]. The uncertainty regions across an
unsampled time interval combine to form a buffered line segment, or a 3D cylinder in location-time
space [90]. In a different approach, the location I’ is constrained by an ellipse whose two foci are
the reported locations I, and [, and whose eccentricity is determined by the maximum speed [176].
In the location-time space, the shape of the ellipse becomes a bead (also known as space-time
prism [77,100]) as an integrated body of an upward and a downward pointing cone [90, 176], and the
bead sequence for a discrete trajectory forms a “necklace” [81, 99, 145, 205, 268]. Speed-constrained
beads can be further refined by fusing spatial constraints derived from additional sensory data
(e.g., road-side sensor data [257]). Beyond the speed constraint, Markovian dependencies along a
trajectory are exploited such that unobserved locations can be instantiated by a stochastic process
over observed locations. In the setting of a discrete grid that partitions the space, an object’s
current grid location can be inferred based on its first-order Markovian record (its last reported
location) [62, 166, 265]. Assuming a Gaussian distribution of the current uncertain location, its
mean and standard deviation can be inferred from previous uncertain locations that also follow a
Gaussian distribution [90]. Considering a complex space structure, uncertain locations are modeled
based on a particle filtering process such that particles are resampled to replicate high weight
particles and eliminate low weight particles [251].
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Table 6. Selected Queries over Uncertainty Caused by Discrete Sampling

Query Type At a Time Point Across a Time Interval or the Duration of a Trajectory

NN and kNN Queries uniform circular [241]; cylinder [206]; particles [251]; first-order Markovian grids [166,
velocity vector [86] 265]

Range Queries uniform circular [240] particles [251]; first-order Markovian grids [62, 265]; Mar-

kovian Gaussian distributions [90]; combinations of road seg-
ments [280]; speed-constrained beads/necklaces [205]; beads
with mobility constraints [257]

Similarity Ranked Queries combination of sample connections [148]

Reverse NN Queries first-order Markovian grids [61]

Range Aggregate Queries  distance-decaying [112]  combination of sample connections [111]; speed-constrained
bead/necklace [145]

Contact Similarity

and Alibi Queries uniform circular [146] speed-constrained beads/necklaces [99, 268]

From a holistic view, the Cartesian product is used to form all possible trajectories based on
observed discrete locations. The probability of each formed trajectory instance is computed as the
product of the probabilities of all involved observed locations. In a setting where each observed
location is described as a set of location samples, the possible trajectories are generated by connect-
ing two samples at each pair of consecutive timestamps [111, 148]. In a road network, each possible
route comes from the combination of possible road segments between each two consecutively
observed route locations [280].

Table 6 summarizes different queries and their uncertainty models in the setting of discrete
sampling.

Queries over uncertain spatial data have been studied extensively in the last decades, while how
to query uncertain SID in a resource-limited and stream setting remains open [284].

4.1.2  Queries over Dynamic SID. The dynamics of SID bring about issues of data volume, data
evolution, and data skew in spatial query processing.

To efficiently process Queries over Massive SID, distributed computing [50, 153, 231, 250, 252]
and stream computing [50, 91, 153] techniques have been proposed.

You et al. [250] implement two systems, namely SpatialSpark based on Apache Spark and ISP-MC
based on Apache Impala, to support indexed spatial joins based on point-in-polygon testing and
point-to-polyline distance computation. Xie et al. [231] develop an in-memory distributed frame-
work that leverages segment-based partitioning and two-layer indexing of trajectories to enable
large-scale similarity search. Mapping and partitioning noisy trajectories based on road networks,
Yuan and Li [252] support in-memory distributed similarity search and join by quickly pruning
irrelevant partitions and dissimilar trajectories. As an extension of the distributed stream processing
platform Apache Storm, Mahmood et al. [153] implement a spatio-textual query processing system
with a spatio-textual index that can adapt to the data distribution and query workload. To enable
continuous spatio-textual queries over flooding geo-tagged text streams, Chen et al. [50] propose a
distributed publish/subscribe system with a workload distribution algorithm that adapts to both
space and text properties of the data. These methods focus on the scalability of the query processing,
without considering reducing data for high-speed yet low-cost computation.

For Queries over Evolving SID, object locations and other information arrive continuously in
a streaming fashion. Safe region [13, 38, 74, 107, 168, 180, 237] and incremental evaluation [114,
242, 259] strategies have been applied to reducing the communication and computation overhead.
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Qi et al. [180] provide a systematic review of safe region-based techniques for continuous
kNN [107, 168] and range [13, 38] queries. We cover representative studies of other types of safe
region-based continuous spatial queries as follows. First, to enable efficient processing of subscrip-
tions to incoming events in the proximity of moving users, Guo et al. [74] propose a communication
cost model and incremental schemes to construct safe regions for spatial Boolean expression match-
ing over event streams. Second, to continuously find pairs of users whose dynamically changing
distance is below a threshold, Xu et al. [237] build safe regions based on predicted locations using
non-linear motion patterns. Third, Hidayat et al. [79] devise efficient safe region construction
algorithms for both skyline and top-k queries with continuous query location updates.

To enable continuous optimal shortest path queries with dynamic traffic, Yang et al. [242] propose
means of quickly finding affected queries and updating their shortest path answers when road
conditions change. To continuously provide k alternative paths as a user moves on a path towards
the target, Li et al. [114] devise depth-aware algorithms that maintain and exploit previously
computed useful information to efficiently update the query result. Assuming a moving object’s
partial trajectory is being updated, Zhang et al. [259] study continuous trajectory similarity search
based on pruning and incremental evaluation. These algorithms are centralized and have not
considered the locality of SID in decentralized settings.

Skewed SID generated by mobile users is seen commonly in IoT and cloud computing environ-
ments. For Queries over Skewed SID, node load-balancing [183] and data partitioning [183, 210,
221] have been adopted.

Ray et al. [183] propose a heterogeneous cluster-based spatial query processing infrastructure
that uses declustering to create balanced spatial partitions and dynamic load-balancing to resolve
performance heterogeneity and data skew during processing. To support multi-dimensional range
and NN queries over skewed data, Wei et al. [221] propose a dynamic and scalable index KR*-index
on Cassandra that enhances R-tree with keys constructed as the Hilbert-value of the centroid
coordinate of the leaf rectangle. Vo et al. [210] propose a spatial data partitioning framework SATO
that consists of Sampling, Analysis for partitioning strategy, Tearing for data distribution, and
Optimization based on succinct partition statistics. So far, query processing algorithms and data
partitioning/indexing strategies have not been considered for decentralized edge devices.

4.1.3 Queries over Decentralized SID. In a distributed architecture, data encryption [73, 94, 249]
and heterogeneity [59, 193, 234] pose challenges to query processing.

To enable the outsourcing of range and kNN querying on private spatial data, Yiu et al. [249]
propose a spatial transformation scheme that balances efficiency and privacy as well as a crypto-
graphic transformation scheme. Kamel et al. [94] consider updates from data owners to encrypted
outsourced data and contribute a dynamic spatial index to support encrypted range query process-
ing in the cloud. Aiming at uncertain data encrypted in decentralized semi-trusted servers, Guo et
al. [73] design an authorized ranking method to process kNN queries over ciphertexts.

To enable spatial queries over heterogeneous location data sources, Xu and Giiting [234] propose
a generic and precise location representation for moving objects referencing a set of defined
infrastructures. To query similar asynchronous trajectories generated by multiple sources, Sun
et al. [193] select optimally matched points based on spatial and temporal thresholding and use
the selected points to measure multi-source trajectory similarity. To integrate heterogeneous data
models and workflows (e.g., indexing and query processing) for big and diverse trajectory data,
Ding et al. [59] propose a unified data management and analytics platform that provides unified
storage and computing engine and an enhanced distributed computing paradigm with flexible
APIs. These works collect heterogeneous data and process them in a centralized manner and do
not address the querying of heterogeneous data at decentralized nodes with different capabilities.
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4.2 Analyses on Low-quality SID

We categorize existing analysis techniques targeting low-quality SID based mainly on quality issues
related to uncertainty and dynamics (volume and evolution). Within each category, works are
organized according to their analysis tasks. The relevant but special form of visual analytics tasks
have been covered by Section A.2 in the Supplementary Material.

4.2.1 Analyses of Uncertain SID. To address uncertainty in SID, data analysis techniques often
exploit probabilistic modeling [120, 123, 203, 219, 276], spatiotemporal dependencies [132, 140, 214,
244, 276], and spatial constraints [44, 174, 203, 222].

Clustering. Assuming trajectories are captured as sequences of uncertainty regions, Pelekis et
al. [174] propose an intuitionistic fuzzy vector representation to compress uncertainty and generate
centroid trajectories to capture similar movements, upon which they conduct Fuzzy C-Means
clustering over the generated centroid trajectories. Considering network-constrained trajectories
with positioning errors and low sampling rates, Chen et al. [44] construct an approximate minimum
spanning tree of a trajectory to define similarity on candidate segments. In this setting, a graph-based
clustering algorithm is proposed that uses representative points to update clusters incrementally.

Anomaly Detection. Li et al. [132] propose an N-gram-based abnormality measurement method
to identify missing events in medical devices. They construct hotspots of abnormal events and
model transitions between hotspots using finite state machines. To reduce the influence of uncertain
tracing data on the abnormality measurement, they devise an iterative algorithm for the recovery
of missing records and estimation of transition probabilities.

Frequent Pattern Mining. Considering a high degree of incompleteness and noise in spatiotem-
poral sequences, Li and Han [123] study techniques for period detection and periodic behavior
detection. Using sequence-level and element-level data uncertainty models, Zhao et al. [276] find
probabilistically frequent sequential patterns based on a prefix-projection version of the PrefixSpan
algorithm. To retrieve sequential stop-by pattern (sequential occurrence regions) from uncertain
RFID data, Teng et al. [203] propose a probabilistic model to capture deployment and spatial con-
straints, find uncertain candidates based on filtering and mapping construction, and output the
stop-by patterns by means of an Index 1-itemset algorithm and an event clustering algorithm. To
extract sequential stay events from noisy trajectories, Yang et al. [244] design a density function that
considers neighborhood movement ability and stay time as well as a trajectory clustering algorithm
with dynamic noise tolerance. Assuming multi-instance location uncertainty, Li et al. [120] study
probabilistic threshold mining of frequent spatiotemporal sequential patterns based on a dynamic
programming method for computing the frequency probability of patterns. Assuming uncertainty is
captured as a probability distribution, Wang et al. [219] propose fast co-occurrence pattern mining
algorithms based on filter-and-refinement.

Hotspot and Popular Route Discovery. Liu et al. [140] study community detection based
on diffusion modeling on noisy trajectories and additional fine-grained markers (e.g., movement
velocity and the semantics of locations). To detect high-density crowds from noisy Wi-Fi positioning
sequences, Wang et al. [214] simplify and reconstruct sequences based on stay points and Kalman
filtering, and propose a spatiotemporal version of the OPTICS algorithm. Wei et al. [222] infer
the top-k routes that sequentially pass the given locations within a specified time interval, by
aggregating temporally sparse trajectories over a graph constructed for routing.

The above-mentioned proposals are batch-oriented and centralized, and they do not consider
real-time and decentralized settings.

4.2.2  Analyses of Dynamic SID. To handle high data volumes in analytics, indexing and pruning [32,
216, 258], distributed computing [83, 194, 228], and stream computing [42, 65, 138] techniques have
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been proposed. Spatiotemporal dependency modeling and online learning [142, 170, 217, 227] have
been utilized to facilitate the analysis of evolving SID.

Clustering. Assuming a decentralized, noisy RFID system, Wu et al. [228] define a Time-
Parameterized Edit Distance to form RFID trajectory clusters in a MapReduce framework. Each
cluster is a sequence of node-range pairs that describe the co-movement of a group of objects.
Given massive trajectories, Hu et al. [83] use coarse-grained Dynamic Time Warping to enable fast
similarity computation and further propose a MapReduce-based strategy to slice and cluster trajec-
tories. To enable scalable clustering over map-matched trajectories, Wang et al. [216] propose an
edge-based distance (EBD) measure to reduce time complexity, an algorithm extended from Lloyd’s
algorithm’ for finding k representative paths, and an indexing framework with a pivot-table and
an inverted index to avoid unnecessary distance computations. Wang et al. [217] construct a kNN
network to capture changing locations of vehicles, learn low-dimensional vehicle representations
by performing dynamic network representation learning on the constructed network, and use
K-medoids and Gaussian Mixture Models to cluster vehicles with similar behavior patterns.

Anomaly Detection. Given continuous trajectory streams with changing distributions, Bu et
al. [32] monitor anomalous patterns characterized by big spatial deviations within certain time
intervals by means of online local cluster construction, pruning strategies, and piecewise metric
indexing. By comparing against historically “normal” routes on the fly, Chen et al. [42] identify
anomalous sub-trajectories as well as the corresponding parts that indicate the anomalies. To
detect anomalies in partial trajectories that have not reached a destination, Wu et al. [227] capture
driving behavior and preferences based on a maximum entropy inverse reinforcement learning
model. To enable online updates of anomaly scores of trajectories, Liu et al. [142] propose a
Gaussian Mixture Variational Sequence AutoEncoder to capture complex sequential information
of trajectories and to discover different types of normal routes in a latent space. Mao et al. [154]
propose a feature grouping-based algorithm to detect abnormal trajectory fragments on the fly
from evolving trajectory streams with skewed distributions.

Frequent Pattern Mining. Sun et al. [194] construct a Probabilistic Suffix Tree to mine signif-
icant subsequence patterns from massive uncertain spatiotemporal data using Hadoop. To find
spatial co-evolving patterns (groups of sensors that are spatially correlated and co-evolve frequently
in their readings) from massive geo-sensory data, Zhang et al. [258] propose a two-stage approach.
First, frequent evolutions for individual sensors are detected via a segment-and-group approach.
Second, the evolutions are assembled while using spatial pruning enabled by a pattern search tree.
Liu et al. [138] propose aggressive and conservative strategies to process sequence pattern mining
on out-of-order RFID event streams.

Event Discovery. To discover spatial events from conflicting mobile crowdsourced data, Ouyang
et al. [170] propose TSE (Truth finder for Spatial Events) and Personalized TSE models to handle
diverse and noisy participant reports in an unsupervised way. Assuming streaming spatial objects,
Feng et al. [65] propose a sliding window model to continuously detect bursty regions with many
spatial objects in a specified spatial and temporal range.

How to migrate the functionality covered above to edge devices to reduce cost and latency are
highly relevant future research topics.

4.3 Decision-Making using Low-quality SID
A variety of decision-making tasks based on SID are relevant, such as the prediction of next

location(s) [48, 102, 104, 105, 181, 262], traffic volume [141, 199], and spatiotemporal variables [46,
67, 147, 164, 245, 253]; the recommendation of POIs [82, 155, 264, 273] or routes [72]; and the

"Lloyd’s algorithm [143] is originally for Voronoi-based iterative centroid estimation.
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planning of task assignments [192] or site selection [40, 272]. We organize studies according to the
DQ issues they address in learning, namely the scarcity of labels, limited data availability and data
bias, uncertainty of data, dynamics of data, and heterogeneity and decentralization of data.

Scarcity of Labels. This issue has been addressed in unsupervised learning (such as EM [82],
AutoEncoder [48, 236], and GAN (Generative Adversarial Network) [48]), semi-supervised learning
(such as co-training [46] and PU learning [40]), and multi-task learning [67, 253, 273]. Considering
multiple latent temporal parameters in POI recommendation, Hosseini et al. [82] retrieve multi-
aspect temporal similarity maps to reduce user-location matrix sparseness and use the EM algorithm
to compensate for incomplete data at each temporal scale. To assess the quality of unlabeled
volunteered geographic information (VGI), Xu et al. [236] match VGI and official data to obtain
samples to train an AutoEncoder by minimizing reconstructed errors. Chen et al. [48] adopt GANs
or Variational AutoEncoders to generate qualified trajectories for self-driving simulation and
traffic analyses. To estimate urban air quality at a fine spatial granularity, Chen et al. [46] adopt
an ensemble semi-supervised learning method with iterative co-training to counter the limited
availability of labeled data. To select new public toilet locations with limited positive labels of
regions (i.e., having toilets placed there), Chen et al. [40] identify reachable regions, construct their
high-order and semantic representations from multi-source urban data, and adopt PU learning
over the representations to identify unlabeled positive regions that should have a toilet. Yuan et
al. [253] devise a multi-level multi-task learning framework for predicting lake water quality at
multi-scales, in which information among region-specific models are shared to help create models
for regions with limited or no training data. Assuming incomplete labels when forecasting the
scales of spatial events, Gao et al. [67] propose a multi-task ordinal regression framework that
enforces similar feature sparsity patterns for different tasks while preserving the heterogeneity in
their scale patterns. Using a Spatio-Temporal Gated Network, Zhao et al. [273] jointly train the POI
context prediction and next POI recommendation to fully leverage labeled and unlabeled data.

Limited Availability and Bias of Data. This issue has been addressed in transfer learn-
ing [72, 245] and federated learning [105, 155]. To transfer long-period data from other cities
for spatiotemporal prediction, Yao et al. [245] train a well-generalized spatial-temporal network
based on a meta-learning paradigm. Aiming to learn routing preferences between a pair of identified
regions, Guo et al. [72] resolve sparse and skewed trajectories between a region pair by transferring
routing preferences from the pairs with dense trajectories. Assuming mobility data is protected
locally, Li et al. [105] propose a federated learning framework for location prediction that utilizes
self-attention and local-global fusion to achieve personalization. Aiming at privacy-preserving and
sparsity-aware location recommendation, Meng et al. [155] propose randomized data obfuscation
and region aggregation methods to deal with data sparseness and propose tensor factorization-based
spatial similarity to execute predictions at spatial neighbors.

Uncertainty of Data. Probabilistic modeling [181, 264] is used to handle location uncertainty,
while reinforcement learning [199] is used to deal with incompleteness. By removing outlier
trajectories via clustering, Qiao et al. [181] construct a continuous time Bayesian network to
capture correlations among street ID, speed, and direction for predicting the motion of an uncertain
moving object. To recommend next individual POIs with uncertain check-ins at collective POls,
Zhang et al. [264] exploit hierarchical category transitions to model users’ preference transitions
and semantic relatedness of POIs at different granularities. Using incomplete trajectories for traffic
volume inference, Tang et al. [199] use deep reinforcement learning to recover vehicle movements
and use graph embedding to encode multi-hop traffic propagation between road segments.

Dynamics of Data. Reinforcement learning [104, 192], incremental learning [102], and edge
computing [147] techniques have been exploited. To predict a remaining trajectory from an observed
partial trajectory, Le et al. [104] use reinforcement learning to model sequential decision-making
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and employ long-term optimal planning for predictions. Considering emerging crowdsourcing
workers in spatial task assignment, Sun et al. [192] propose GRU (Gated Recurrent Unit)-based
predictors for tasks and workers and propose adaptive batching strategies based on the Deep
Q Network. To predict destinations in data streams, Laha and Putatunda [102] apply a sliding
window with the exponentially fading to four incremental learning methods (i.e., multivariate
multiple regression, spherical-spherical regression, randomized spherical kNN regression, and their
ensemble). For short-term energy prediction over dynamic STID, Luo et al. [147] propose an online
edge computing framework that performs acquisition, processing, and deep regression in sensing
nodes, routing nodes, and the central server, respectively.

Heterogeneity and Decentralization of Data. Multi-task [164] and multi-view learning [89,
262, 269, 272] techniques have been adopted to integrate multi-source data, while federated learn-
ing [141] is used to facilitate decentralized models. Nguyen et al. [164] present a Spatial-temporal
Multi-Task Learning algorithm to integrate multiple heterogeneous data sources for within-field
crop yield prediction. Zhang et al. [262] utilize context-aware tensor decomposition and iterative
multi-view learning to combine cellphone call detail records and transportation data for improving
single-view mobility inference. Zhao et al. [272] propose a site selection framework that learns
functions of architecture from multi-source urban big data. Zhang et al. [269] extract physical and
human semantic features from remote sensing images, POIs, and real-time social media users. They
then map them to common subspaces to obtain cross-correlations that enable the recognition of
urban functions. Jenkins et al. [89] employ Denoising AutoEncoders and Graph Convolutional
Networks to jointly learn region representations from satellite images, POIs, human mobility data,
and spatial graph data. Liu et al. [141] propose a federated learning-based GRU network for traffic
flow prediction that updates universal learning models through a secure parameter aggregation
mechanism rather than by directly sharing raw data across organizations.

Lightweight Al [267] for rapid decision-making close to the data source is a promising direction
for the above-mentioned work to move toward more innovative IoT scenarios.

5 PROSPECTS: TRENDS AND FUTURE DIRECTIONS

Based on the review of DQ technologies in Sections 3 and 4, we find that SID quality management
is being integrated with different learning techniques® and that SID quality related computing is
becoming increasingly relevant in dynamic, decentralized, and heterogeneous settings. We proceed
to present emerging trends in Section 5.1, and discuss future directions in Section 5.2.

5.1 Emerging Trends

Privacy-preserving Computing. SID, and IoT data in general, may include sensitive data. The use
of cloud computing and the decentralized architecture of the IoT combine to yield new requirements
for privacy protection and security. Thus, an important direction is to enable effective, privacy-
preserving, and secure SID management and analysis [196]. We have seen that SID is often encrypted,
obscured, anonymized, or hidden, to address privacy requirements. However, this often comes at the
cost of reduced usability of the data from the perspective of applications. In this context, studies have
focused on effective queries [73, 94, 249], analyses [179], and decision-making [155] on encrypted
or obscured SID. In addition, from the perspective of quality management, how to construct
privacy-preserving data representations (e.g., embeddings [89, 142, 217]) or effective cryptographic
solutions [47, 73, 94, 249] also call for in-depth research. With the increasing prominence of data
protection regulations such as GDPR [1] and CCPA [4], we anticipate much more research dedicated
to secure yet effective SID computing.

8Please also refer to the connections between techniques and tasks in Supplementary Material Section A.1.
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Edge/Fog Computing. The decentralized IoT architecture, where data is created at the edge, also
introduces challenges and opportunities related to data processing. In particular, the architecture
offers exciting opportunities for edge or fog computing to improve processing efficiency and reduce
central, single-point workloads. Market intelligence firm IDC [2] predicts that at least 40% of IoT
data will be stored and processed at the edge or close to the edge. To handle quality issues of SID,
edge/fog computing has been combined with stream computing [118], blockchain technology [35],
transport SDN [161], lightweight Al [267] and system-on-a-chip [151, 274] to increase system
scalability, autonomy, and economy.

Reinforcement and Incremental Learning. SID often tracks evolving processes and is up-
dated dynamically. This nature of the data calls for processing models with corresponding capa-
bilities of dynamic and incremental processing. For example, many control and decision-making
processes can be abstracted into reinforcement learning models whose parameters can be adjusted
incrementally. In the handling of SID quality issues, reinforcement learning has proven effective
at addressing data sparseness and incompleteness [104, 192, 199, 218, 226], and reinforcement
learning can be expected to find use in a broader range of quality management, data analysis, and
decision-making tasks on streaming and dynamically changing SID.

Comprehensive Data Fusion for Improved DQ. Multi-source, multi-modal, and heteroge-
neous urban IoT data is becoming increasingly available [135]. Research on such data has focused
on how to effectively integrate diverse and rich, but also biased, spatiotemporal data sources for
better DQ from different technical perspectives. First, multi-task [67, 164, 253, 273] and multi-view
learning [260, 272] are being used to extract latent and high-quality features based on correla-
tions in multi-source data. Second, techniques based on transfer learning, federated learning, and
pre-trained models [72, 105, 141, 155, 245] are being studied that aim to utilize diverse data to
enhance the richness and expressiveness of the training data. Third, representation learning tech-
niques [40, 48, 89, 199, 217] have been proposed that attempt to map heterogeneous and multi-modal
data to subspaces to enable joint utilization of their information. Finally, techniques based on data
integration [23, 98, 169, 264] aim to exploit extra knowledge or expertise to enhance the quality of
SID and the interpretability of models of SID.

5.2 Open Issues and Future Directions

Although many studies consider the quality of SID, no systematic studies exist on how to coordinate
DQ technologies in IoT settings. We offer several promising directions from this perspective.

Dynamic DQ Modeling. SID collection, processing, and transmission may involve thousands
or even millions of heterogeneous and dynamic data nodes, making DQ management potentially
very complex. Therefore, effective quality modeling techniques are needed to guide each individual
node’s data handling and its interaction with other nodes. If capturing decentralized data nodes as
vertices and data dependencies between them as edges, representation learning over the constructed
dynamic graph [96, 217] holds the potential to enable estimating and predicting quality measures.
Furthermore, factors such as external environmental influence, local properties and resource
constraints, and the spatiotemporal distribution of nodes can be incorporated into the goal function
design of a model to cope with quality modeling in different application contexts.

Secure SID Sharing. Many studies on spatial computing [36, 127, 193, 215, 262] exist that
demonstrate the power of integrating multiple data sources. However, [oT data repositories in most
enterprises are still in silos, depriving enterprises of valuable insights that can be realized only by
mining broader data pools of SID [3]. Constructing such SID data pools calls for trustworthy proto-
cols and data governance mechanisms for secure and reliable data sharing across IoT repositories.
Blockchain and federated learning techniques are relevant here—the former authenticate data, and
the latter train models globally while safeguarding each enterprise’s private data [35, 101].
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DQ-aware Task Planning. A variety of quality management services are exploited in IoT
settings, including outlier removal, fault correction, compression, and interpolation. From the
perspectives of resource optimization, self-adaptivity, and sustainability, it is important to conduct
a quantitative cost-benefit analysis of such DQ-related services [209] as a foundation for under-
standing how they can be applied to optimize DQ locally or globally. To enable fine-grained and
reliable cost-benefit analyses, it is relevant to take into account DQ modeling, evolving topology
and characteristics of IoT nodes, and the priorities and data dependencies of DQ tasks.

Cross-layer Quality Management. Today’s IoT adopts a layered approach that separates DQ
tasks with different goals and data scopes logically. In spite of the proliferation and increasing
diversity of SID applications, the usage of bottom-layer, general-purpose DQ services (e.g., compres-
sion and interpolation) has been rather limited. To enable quality management that is sufficiently
general to support diverse applications, an interesting direction is to modularize and containerize
services and to organize the resulting modules in a cross-layer fashion [37], e.g., through directed
acyclic graph models. To realize this vision, secure and efficient control protocols and interfaces
compatible with edge computing and microservices are poised to be key enabling technologies.

Quality Management Middleware for SID. In general, the dynamic nature, heterogeneity,
and disorder exhibited by SID represent obstacles to its utilization. To enable ubiquitous quality
management of SID and to enable applications to better utilize SID, quality management middleware
that fits in the IoT paradigm is highly desirable. Such middleware is expected to integrate the
technical directions mentioned above.

We end this section by providing an application perspective. With the continued advances in
spatial sensing and autonomous movement, paradigms such as Internet of Vehicles [235], Internet
of Flying Robots [85], and Internet of Medical Things [68] are becoming increasingly relevant.
However, conflicts and crashes affect peoples’ confidence in, and acceptance of, autonomous
movement technologies. It is reported [8] that a large fraction of accidents are caused by sensors
failing to perceive the environment in a correct and timely manner. Therefore, we believe that DQ
technologies for spatial IoT data may play an important role in the context of these paradigms.

6 CONCLUSIONS

In this survey, we focus on the quality-aware utilization of spatial IoT data. First, we analyze
the data consumption requirements of SID and define major data quality dimensions. Based on
these dimensions, we summarize the significant characteristics of spatial IoT data and identify
the associated quality issues related to spatial and thematic attributes. Subsequently, we analyze
data quality technologies available for enhancing spatial IoT data and present a taxonomy of
these technologies from both task and technique perspectives. Adopting the proposed taxonomy,
we extensively review and categorize existing studies on quality management, covering location
refinement, uncertainty elimination, outlier removal, fault correction, data integration, and data
reduction, and we review studies on low-quality data exploitation, covering querying, analyses,
and decision-making. Finally, we provide insight into emerging trends related to data quality in IoT
data and discuss the future directions for innovative quality-aware SID utilization.

The survey covers trajectories and spatiotemporal data with general data values separately. Much
of work reviewed, while not focused in particular on IoT settings, is applicable to some extent
to IoT scenarios. In the coming years, IoT will continue to be a field of continuous development
and innovation. Its unique features, such as decentralization, dynamics, and heterogeneity, and
the resulting quality issues, will continue to offer opportunities and challenges for the design,
development, and deployment of IoT-enabled spatial applications.
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Table 7. Connections Between DQ Tasks and DQ Techniques

Task Decision-
Tech- LR UE OR FC DI DR Querying | Analyses ki
nique making
Prob. M. [63, 134] | [110, 226] | [239, 255] | [64, 157] | [109, 126] | [119] [00, 266] | [203,276] | [181, 264]
STD M. [229] [116] [29,277] | [43,64] | [93.283] | [136,159] | [62,166] | (214, 244] | [102, 262]
STR M. [121, 281] | (255, 256] | [43.64] | [126,225] | (34, 267] [170] (141, 273]
SCM. [60] [191, 226] | [282] [20,21] | [109, 110] | [41, 243] | (237, 263] | [222,258] | [72]
UL [29, 255] (142, 170] | [48, 82]
SSL [40, 46]
RL [218] 227] [192, 199]
MTL/MVL [260] [164, 269]
TL [72, 245]
FL [105, 155]
Ds. Com. [162] 57,248] | [231,252] | (83, 194]
Str. Com. [138] [25] 41,128 | [153] [42, 65] [102]
Col. Com. 149, 263] | [115,281] | [198] 275] [264]
E/F Com. [22,149] | [197, 267] [147]

A  SUPPLEMENTARY MATERIAL
A.1 Connections between DQ Tasks and Techniques

In Table 7, we use some classic studies to illustrate connections between DQ tasks and DQ techniques.
An empty cell does not necessarily mean that a certain technique cannot be used for a certain task.
It may simply mean that we do not cover studies that represent this combination.

The full names of abbreviated DQ tasks are listed as follows: LR (Location Refinement), UE
(Uncertainty Elimination), OR (Outlier Removal), FC (Fault Correction), DI (Data Integration), and
DR (Data Reduction).

The full names of abbreviated DQ techniques are listed as follows: Prob. M. (Probabilistic Model-
ing), STD M. (Spatiotemporal Dependency Modeling), STR M. (Spatiotemporal Regularity Modeling),
SC M. (Spatial Constraint Modeling), UL (Unsupervised Learning), SSL (Semi-supervised Learn-
ing), RL (Reinforcement Learning), MTL/MVL (Multi-task Learning/Multi-view Learning), TL
(Transfer Learning), FL (Federated Learning), Ds. Com. (Distributed Computing), Str. Com. (Stream
Computing), Col. Com. (Collaborative Learning), and E/F Com. (Edge/Fog Computing).

A.2 Visual Analytics on Low-quality SID
We introduce the visual analytic studies for uncertain and dynamic SID, respectively.

Visual Analytics on Uncertain SID. Data uncertainty such as imprecision, sparse sampling,
and missing values make visual analytics of trajectories and other spatially referenced data more
challenging [286, 287]. Some studies [289, 291, 292] address challenges related to uncertainty in
visual analytics. To handle uncertainty in visual analyses of urban mobility patterns over sensor
network data, Senaratne et al. [292] construct uncertain markers based on space-time prisms. As
conflicts from heterogeneous data impede visual human behavior analytics, Chen et al. [289] propose
a semi-automatic pattern and outlier detection approach with a pre-defined set of uncertainty
types. Further, to enable visual traceability of faulty IoT data, Lomotey et al. [291] use associative
rules and lexical chaining methods to identify (un)linkability between IoT devices for correctness
checking in sensor data propagation.

Visual Analytics on Dynamic SID. Visualization tools [288, 290] have also been explored
in analyzing large-scale and evolving SID. To ease the analysis of high-dimensional air quality
measurements, Kalamaras et al. [290] propose a reactive visual analytics platform that aims to
support explainable spatial data analysis. Batista et al. [288] develop a set of visualization tools



to enhance the understandability of analyses of data collected from a worldwide climate sensor
network.
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