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1. Introduction
y Indoor movements are increasingly datafied due to the rapid growth of indoor

LBS infrastructures. Proper analysis can reveal insights that are otherwise
difficult to obtain.
y Indoor flow analysis. the number of people passing by particular indoor regions during a

past time interval. Application include exhibition planning, location-based advertising, etc.

y The problem of finding the top-k popular indoor semantic locations with the
highest flows during a past time interval.
y The mobility information of an object at a time t is captured by a set of probabilistic samples

in the format of (loc, prob).

y The first challenge is the difficulty in obtaining reliable flow values due to the inherent
uncertainty in multiple samples reported at discrete timestamps. The data uncertainty
together with complex indoor topology entails an appropriate formulation of indoor flows.

y The second challenge comes from the heavy computational workloads on the samples
for large numbers of indoor objects.

y A complete set of novel techniques for indoor flow analysis.
y We formulate the definition of indoor flows by taking into account both data uncertainty and

indoor topology.

y We devise data structures to facilitate accessing the data relevant to flow computing, and a
data reduction method to significantly reduce the intermediate data to be processed.

y We design search algorithms for finding indoor top-k popular locations.

2. Problem Formulation
y Semantic locations (S-locations) refer to regions relevant to applications, e.g., a shop.

y Positioning locations (P-locations) refer to points returned by indoor positioning system.
y Partitioning P-locations partition space into cells in that objects cannot move from one

to another without passing these P-locations. y Presence P-locations only imply the
presence of a positioned object.

y A record (o,X , t) is reported to an Indoor Uncertain Positioning Table non-periodically,
meaning o’s location at t is described by a sample set X . Each sample e(loc, prob) in X
means that o is at a P-location loc with probability prob.

y Uncertainty-aware object presence in a S-location q during time interval [ts, te].
y For each object o’s sample sets sequence (X1, . . . ,Xn) Ô Obtain possible paths in the

Cartesian product φi = (loc i
1, . . . , loc i

n) Ô Compute path probability as pri =
∏

1≤j≤n prob i
j

where prob i
j is the probability associated with P-location loc i

j in Xj.

y The pass probability that φ passes q is 1 minus the probability that none of consecutive
P-location pairs in φ passes q Ô o’s presence in q is Φts,te(q, o) =

∑
φi∈P

(prφi;q·pri)∑
φi∈P

pri
.

y Indoor Flow. Given an S-location q, a set O of indoor moving objects, and a time interval
[ts, te], the indoor flow for q is Θts,te,O(q) =

∑
o∈O Φts,te(q, o).

y Top-k Popular Location Query, TkPLQ. Given a set Q of indoor semantic locations,
and a time interval [ts, te], an indoor top-k popular location query returns k S-locations in a
k -subset Qk ⊆ Q such that ∀q ∈ Qk ,∀q′ ∈ Q \ Qk ,Θts,te,O(q) ≥ Θts,te,O(q′).
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y An object o3 has 4 possible paths during [t1, t8], i.e., φ1 = (p2, p2, p3), φ2 = (p2, p3, p3), φ3 =
(p3, p2, p3) and φ4 = (p3, p3, p3). In particular, φ1’s probability is 0.6 × 0.4 × 1.0 = 0.24.

y The possible path φ1 contains sequential P-location pairs (p2, p2) and (p2, p3). For (p2, p2), we find
two direct connections, and have prp2,p2;r6 = prp2,p2;r4 = 1/2. Likewise, for pair (p2, p3), prp2,p3;r4

= 1 and prp2,p3;r6 = 0. The pass probability prφ1;r6 = 1 − (1 − 1/2) · (1 − 0) = 0.5.

y The presence Φt1,t8(r6, o3) = 0.5 · 0.24 = 0.12, and Φt1,t8(r1, o3) = 0.

y S-location r6’s indoor flow is Θt1,t8,O(r6) =
∑

1≤i≤3 Φt1,t8(r6, oi) = 1+0.85+0.12 = 1.97, r1’s is Θt1,t8,O(r1)

=
∑

1≤i≤3 Φt1,t8(r1, oi) = 0.5 + 0 + 0 = 0.5. A T1PLQ during [t1, t8] returns room r6.

3. Algorithms for TkPLQ

3.1 Data structures and data reduction method.

y To bridge the gap between P-locations and S-locations, we devise an indoor space
location graph. A cell c1 Ô rooms r1 and r2 Ô partitioning P-locations p4 and p9.

y We further build an indoor location matrix MIL for quickly searching relevant cells (S-
locations) of two sequential P-locations in a path. MIL [p4, p9] = {c1, c6} and MIL [p8, p8] = c6.




p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 {c4,c5} c4 c4 ∅ c5 ∅ ∅ ∅ ∅
p2 {c4,c6} c4 c6 ∅ c6 ∅ c6 c6
p3 {c3,c4} ∅ ∅ ∅ ∅ ∅ ∅
p4 {c1,c6} c6 c6 c1 c6 {c1,c6}
p5 {c5,c6} c6 ∅ c6 c6
p6 c6 ∅ c6 c6
p7 c1 ∅ c1
p8 c6 c6
p9 {c1,c6}




y For sequence (X1, . . . ,Xn), the maximum number of possible paths is as large as
∏

1≤i≤n |Xi|.

y For each set Xi, we use an intra-merge operation to combine the samples from the P-locations that are
logically equivalent in constructing MIL (e.g., p6 and p8).

y We use an inter-merge operation
to compress the sequence length |X|
by merging the consecutive sets that
contain the identical P-locations.
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3.2 Flow computing and TkPLQ search.

y Flow computing for individual an S-location * fetch and go through all relevant positioning
records within [ts, te] that are indexed by an 1DR-tree.
y The matrix MIL is checked to determine if the current path to be generated is valid, and only the valid ones

will be involved in subsequent path generation.

y Naive algorithm sorts top-k results after blindly computing each query location’s flow.

y Nested-Loop caches each encountered object’s presences to avoid re-computation.

y Best-First gives priority to those promising
query locations with greater flow overestimates.
To quickly locate the relevant object samples,
we carry out a join of a query location R-tree
and an object COUNT-aggregate R-tree.
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4. Experimental Results

y We compare Naive, Nested-Loop and Best-First to several alternatives.

y SC (simple counting) method picks the sample with the highest probability and adds 1 to all its containing
S-locations’ flow values.

y SC-ρ differs from SC only in that it picks all the samples whose probability exceeds a threshold ρ.

y MC (Monte Carlo) method executes a certain number of simulations, in each of which all the positioning records
are sampled to be certain. As a result, the top-k locations are ranked based on their average flows in all the
simulations.

4.1 Performance comparisons using a real-world dataset.

y Efficiency metrics * Average running time and Pruning ratio; Effectiveness metrics * Recall and Kendall
coefficient τ w.r.t the ground truth.

y SC and SC-ρ incur short time costs but yield
very poor effectiveness; MC that uses simula-
tions incurs extremely long running time.

y By applying uncertainty-aware flow computing,
BF and NL’s effectiveness measures are sig-
nificantly higher; BF achieves a good balance
between efficiency and effectiveness.

Methods
Running

time (sec.)
Pruning
ratio (%)

Kendall
coefficient

Recall
(%)

SC 0.6 - 0.007 62.2
SC-ρ (ρ = 0.25) 1.1 - 0.382 75.6
MC, 900 rounds 1.7 × 104 - 0.712 86.7

BF 4.4 59.4 0.859 93.3
NL 9.5 19.2 same as above.

Naive 59.1 19.2 same as above.

4.2 Studies on data uncertainty using a synthetic dataset.

y A larger T (maximum positioning period) makes location updates less frequent, which causes data uncertainty
to increase and query result quality to degrade. BF still outperforms the best; its τ keeps above 0.77 in all tests.

y When indoor positioning error µ increases, SC and SC-ρ’s τ decrease clearly as they are sensitive to data
errors. Still, BF outperforms MC as BF considers valid possible paths thoroughly on uncertain positioning data.
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