
Efficient and Error-bounded SpatiotemporalQuantile
Monitoring in Edge Computing Environments
Huan Li

Aalborg University, Denmark
lihuan@cs.aau.dk

Lanjing Yi
SUSTech, China

11911208@mail.sustech.edu.cn

Bo Tang
SUSTech, China

tangb3@sustech.edu.cn

Hua Lu
Roskilde University, Denmark

luhua@ruc.dk

Christian S. Jensen
Aalborg University, Denmark

csj@cs.aau.dk

ABSTRACT
Underlying many types of data analytics, a spatiotemporal quantile
monitoring (SQM) query continuously returns the quantiles of a
dataset observed in a spatiotemporal range. In this paper, we study
SQM in an Internet of Things (IoT) based edge computing environ-
ment, where concurrent SQM queries share the same infrastructure
asynchronously. To minimize query latency while providing result
accuracy guarantees, we design a processing framework that virtu-
alizes edge-resident data sketches for quantile computing. In the
framework, a coordinator edge node manages edge sketches and
synchronizes edge sketch processing and query executions. The co-
ordinator also controls the processed data fractions of edge sketches,
which helps to achieve the optimal latency with error-bounded
results for each single query. To support concurrent queries, we em-
ploy a grid to decompose queries into subqueries and process them
efficiently using shared edge sketches. We also devise a relaxation
algorithm to converge to optimal latencies for those subqueries
whose result errors are still bounded. We evaluate our proposals
using two high-speed streaming datasets in a simulated IoT set-
ting with edge nodes. The results show that our proposals achieve
efficient, scalable, and error-bounded SQM.

1 INTRODUCTION
Quantile computation (QC) [30] is fundamental to assessing the
distribution of a dataset, and thus it underlies many types of data
analytics. The Internet of Things (IoT) is an important QC setting,
where physical information (e.g., temperature, vehicle speed, and
noise) is increasingly datafied in the form of sensor readings. Mon-
itoring quantiles for values of readings within a spatiotemporal
range is useful in many IoT applications. Referring to the example
in Figure 1, many vehicles continuously report their locations and
speeds at each timestamp in an IoT application. To reduce conges-
tion, traffic management authorities can issue queries (e.g., q1) to
monitor the quantiles of the vehicle speeds reported in a given
region (e.g., r1) within a given recent period. Such existing IoT ap-
plications (e.g., [14, 23]) assemble data and compute quantiles in a
centralized fashion, and thus their QC efficiency is suboptimal.

To achieve highly efficient QC in IoT applications, we formulate
a spatiotemporal quantile monitoring (SQM) query that continuously
returns the quantiles of the IoT data received within a spatial re-
gion in a most recent time window. We adopt the mainstream QC

The definitive Version of Record was published in Proceedings of the VLDB Endow-
ment, Volume 15, Issue 9, May 2022, https://doi.org/10.14778/3538598.3538600.

coverage of
#1 BS

#1 BS

streaming
readings

Edge
Computing

Platform

Urban Area

query q1 query q2

r1
r2

edge sketches

S1

S2 S3 S4

Query
User

shared
infrastructure

Query
User

#2 BS
#3 BS

coverage of
#2 BS

Figure 1: An example of SQM in IoT environments.

technology—data sketching [12, 16, 17, 27] that can return quan-
tiles in a time- and space-efficient way while guaranteeing a certain
approximation error. While quantile sketches have been developed
in wireless sensor networks [17, 18, 20, 43], these proposals only
work on an application-specific sensor infrastructure that finds
quantiles according to a predefined approximation error. If a user
changes the monitoring range (spatial or temporal) or the approx-
imation error, the entire sensor infrastructure must be modified,
and the sketches must be rebuilt from scratch. This is unattrac-
tive in real-world applications where quantile monitoring must be
flexible to meet different needs. For example, a user may monitor
vehicle speed quantiles on a campus with approximation error 0.01
to enable alerts. Another user may want quantiles with error 0.1
for forecasting traffic speeds in a district.

Flexible SQM queries call for the decoupling of the sensing in-
frastructure and the specific computations on it. This is possible
with the emerging edge computing paradigm [42] that allows us
to virtualize computing nodes on the devices at the edge of IoT
(e.g., base stations or Wi-Fi/Bluetooth access points). Following this
paradigm, we can build quantile sketches on virtualized edge com-
puting nodes to serve users with different SQM requirements (e.g.,
spatiotemporal ranges and approximation errors). Users get their
desired QC results without touching the underlying sensors and
acquired data. Moreover, compared to centralized processing, edge
computing offloads computations to the infrastructure, reducing the
amount of transmitted data and improving service responsiveness.

Figure 1 exemplifies SQM with edge computing. Suppose that the
target space is an urban region, query q1 monitors the 0.8-quantile

https://doi.org/10.14778/3538598.3538600

vehicle speed in the parking area r1, and query q2 monitors the
0.99-quantile vehicle speed on the campus r2. In the underlying
urban infrastructure, base stations (BSs) with fixed locations are
constantly receiving vehicle readings from within their wireless
coverage. On each BS, edge nodes are allocated to build quantile
sketches. Thus, S2 and S3 are two sketches maintained on the #2 BS,
and they are used to monitor the quantiles of data received from r1
and r2, respectively. The coverage of #2 BS overlaps with r1, so S2
only processes partial data from r1. To get the full monitoring result
for r1, results from S1 and S2 on different BSs should be merged in
the user client. Once a sketch is allocated, its approximation error
and processing latency are fixed. However, the edge computing
platform allows forwarding readings to sketches on other BSs via
high-speed fiber (green lines in Figure 1). This mechanism enables
varying the fractions of data processed at edge sketches, thereby
affecting the overall query latency and result error.

It is challenging to implement such a system in edge computing.
First, the infrastructure is not specific to a query. The infrastructure
processes streaming readings independently and asynchronously.
This non-exclusiveness and asynchrony between the infrastructure
and queries must be resolved by the edge computing platform. Sec-
ond, given a query, we must answer it efficiently while satisfying a
user-specified error bound. Although we can tune the result error
and latency of a query through a data forwarding mechanism, it
remains an open question how to find the optimal data fractions
for edge sketches. Third, considerable resources are needed for han-
dling concurrent queries. As such queries use different spatiotem-
poral ranges and error bounds, it is hard to reuse edge sketches that
process different sets of data with different approximation errors.

To address these challenges, we propose a processing framework
that achieves efficient and error-bounded processing of concurrent
SQM queries on a shared infrastructure. Our framework includes a
set of novel techniques.

First, we introduce a coordinator edge node to resolve the non-
exclusiveness and asynchrony between infrastructure and queries.
The coordinator allocates edge sketches based on the query it re-
ceives and links sketches to the corresponding user clients. It syn-
chronizes the edge sketching and client query execution by aligning
them with small unit time windows (UTs). Edge sketches generate
quantile results per UT, and clients incrementally fetch quantile
results from sketches to answer queries in every UT.

Second, we design a coordinator submodule to optimize the pro-
cessed data fractions of edge sketches. Given a query, we model
the result error and query latency, and we analyze how the two are
affected by the data fractions of allocated edge sketches. Accord-
ingly, we devise a data fraction estimation algorithm that returns
an error-bounded result with a minimized query latency.

Third, we design a coordinator submodule that enables edge
sketch sharing among concurrent queries. This submodule employs
a grid to decompose a query into subqueries, one for each grid cell
it covers. We allocate edge sketches to each cell (subquery), and a
cell is shared among the original parent queries covering it. The
submodule is also equipped with an algorithm to determine the
error bounds of cell-based subqueries. The algorithm employs a
relaxation strategy to approach the optimal latencies of subqueries
while bounding the errors of their parent queries.

Table 1: Notation
Symbol Meaning
Si a quantile sketch in an edge node
q .R, q .T spatial range and time span of a monitoring query q
ϵq , bq , Lq query error, user-specified error bound, query latency
ϵi , ℓi approximation error and unit processing latency of Si
Ej , OLj result error and optimal latency (OL) of a cell c j

The framework can process queries individually with exclusive
resources or process queries concurrently with shared resources.
We evaluate the performance of the framework in the two pro-
cessing modes with two streaming datasets in a simulated edge
computing environment. The experiments show that the submodule
techniques are effective and efficient for SQM using edge sketches.

The major contributions are summarized as follows.
• We define the problem of efficient and error-bounded SQM in
edge computing environments, and we propose a processing
framework with a coordinator node to solve the problem (see
Section 2).
• We propose techniques to optimize the processed data fractions
of edge sketches for achieving efficient query execution with
error bound guarantees (see Section 3).
• We propose a mechanism to share sketches among concurrent
queries, which decomposes a query as a set of shareable cell-
based subqueries. We also devise an error bound determination
algorithm for subqueries, which ensures the optimal latencies of
concurrent queries while bounding their errors (see Section 4).
• We report on extensive experiments on both synthetic and real
mobility datasets, thus providing insight into the efficiency and
effectiveness of the proposed techniques (see Section 5).

In addition, Section 6 covers related work, and Section 7 concludes
the paper and offers research directions.

2 PRELIMINARIES
Table 1 lists notation used frequently in the paper.

2.1 Quantile Computation and Data Sketches
Given a (multi) set D of elements and a parameter ϕ ∈ (0, 1), QC
returns the ϕ-quantile in D as the element whose rank is ⌊ϕ |D |⌋
in ascending order. This task is challenging in online settings with
limited memory [10]. To process streaming data using only small-
sized memory, sub-linear space algorithms [16, 27, 43] (known
as sketches or summaries) are used to compute ϵ-approximate ϕ-
quantile whose rank is roughly within (ϕ ± ϵ)|D |, i.e., bounded by a
specified error ϵ ∈ (0, 1) 1. As input data is inherently inaccurate, ϵ-
approximation is appropriate for a wide range of applications [10].
Figure 2 exemplifies QC with ϕ = 0.6 and ϵ = 0.1, in which either
of {8, 12, 13} is acceptable. When the context is clear, we omit ϕ in
QC as quantile sketches support finding any ϕ-quantiles by ϵ .

We use the celebrated GK algorithm [16] to build sketches, as
it allows merging quantile results from distributed nodes [6]. The
GK algorithm continuously maintains an ordered sequence of tu-
ples of the form (vi ,дi ,∆i). In particular, vi is an arrived value,

1There are also randomized sketches (e.g., MRL99 [31] and KLL [22]) on (ϵ , δ)-
approximation where the result satisfies an error bound of ϵ with a success probability
of 1 − δ . However, our quantile monitoring only considers the deterministic case.

1 2 4 4 8 12 13 18 35 60
sorted values

0.6-quantile

0.1-approximate 0.6-quantile

Figure 2: An example of quantile computation.

дi = rmin (vi) − rmin (vi−1), and ∆i = rmax (vi) − rmin (vi), where
rmin (vi) and rmax (vi) are the lower bound and upper bound of
vi ’s rank over all arrived values, respectively. To guarantee the
error bound ϵ in QC, the algorithm stipulates that the range of
each vi ’s rank is within ⌊2ϵN ⌋ − 1 on the processed data volume
N , satisfying maxi (дi + ∆i) ≤ ⌊2ϵN ⌋. To achieve this, native oper-
ators INSERT, DELETE, and COMPRESS [16] are used. The space
complexity of a GK sketch is O(1ϵ log(ϵN)). As vi is being updated
from the streaming values, GK sketches can handle values that
have never appeared. This represents an advantage over the fixed-
universe quantile sketches like q-digest [43] that assumes values
must come from a definite set.

Tuples of distributed GK sketches cannot be merged directly
because they have been summarized from disjoint datasets. Instead,
an existing method [6] proposes to merge the materialized quantile
results from distributed sketches. Specifically, the i-th (1 ≤ i ≤ K)
distributed node runs the GK algorithm with approximation error
ϵi/2 to materialize a sequence ofϕ-quantiles forϕ ∈ {ϵi , 2ϵi , . . . , 1}.
It has been proved that the error bound of QC using such a quantile
sequence is ϵi [16]: any requested ϕ-quantile can be approximated
by the nearest ϕ-quantile in the sequence with an error no larger
than ϵi . The materialized quantile sequence is sent to a center node
(or user client) for merging. To eliminate ambiguity in this paper,
the error bound of a sketch Si , denoted as ϵi , refers to the QC error
bound using its materialized quantile sequence.

Given the i-th sketch Si to merge, each item in its quantile se-
quence is associated with a weight ϵiNi , where Ni is the processed
data volume of Si . Then, the sequences of items from all sketches are
sorted to form a merged quantile sequence. To output a ϕ-quantile,
the method linearly scans the merged sequence and finds the last
item for which the sum of the weights of all preceding items is less
than ⌈ϕN ⌉, where N =

∑K
i=1 Ni is the summed data volumes of

all distributed sketches. As an important property of merging GK
sketches, the following formula gives the overall error bound ϵ of
QC on the merged sequence from the K distributed sketches.

ϵ =
(∑K

i=1
ϵiNi

)
/N =

∑K

i=1
ϵiηi , (1)

where ηi = Ni/N is the fraction of data processed at Si . We refer
readers to reference [6] for the rationale of merging GK sketches
and the proof of the error after merging.

2.2 Problem Definition
Sensor data is increasingly associated with spatial and temporal
attributes. In general, a reading reported by an interconnected de-
vice (e.g., a vehicle) is captured as d = [x, l, t], denoting a measured
value x generated at location l at time t . We assume x is unary. QC
over n-ary values can be simply parallelized by n threads. Moni-
toring quantiles in given spatiotemporal ranges is fundamental in
multiple applications, such as the task of “visualizing the vehicle

speed distribution on a campus over the last 5 minutes.” Formally,
we define spatiotemporal quantile monitoring as follows.
Definition 1 (Spatiotemporal Quantile Monitoring, SQM). Given
a spatial range R, a time span T , and an error bound b ∈ (0, 1), the
spatiotemporal quantile monitoring SQM(R,T ,b) continuously returns
quantiles from {d .x | d .l ∈ R ∧ d .t ∈ (tc − T , tc]} for the current
query time tc such that the query error ϵq is no larger than b.

Continuously executing QCs is overly costly. Hence, we employ
∆t as a system parameter to control the interval of QCs in SQM. In
the above example of vehicle speed visualization, the time span
T is 5 minutes, the spatial range R specifies the campus, and QC
interval ∆t fits the refresh rate of visualization, like 1 or 5 seconds.

The error bound b is specified by the user to reflect result quality
requirements. In some applications, highly accurate statistics are
needed, and users can specify that the query error must not exceed
a certain small value, e.g., 0.01. We compute the query error ϵq
introduced by quantile sketches as follows.
Definition 2 (Query Error). The error ϵq of the result of a query
q = SQM(R,T ,b) issued at time tc is computed as the maximum
relative error of the ranks of all ϕ-quantiles. Formally:

ϵq = maxϕ |d(ϕ).rk − ⌊ϕ · Nq⌋ |/Nq , (2)

where Nq is the total data volume in R during (tc −T , tc], and d(ϕ).rk
is the true rank of a returned ϕ-quantile to the query.

The latency of executing a query is defined as follows.
Definition 3 (Query Latency). The latency of a query SQM(R,T ,b)
issued at time tc is the difference between tc and the time the result is
returned.

We construct the SQM processing system in an edge computing
environment by maintaining GK quantile sketches at distributed
edge nodes. From a system perspective, wemust 1) ensure the errors
of queries are bounded and 2) minimize the latencies of queries. We
consider the following Min-Max problem.
Research Problem. Given a set Q of active SQM queries at the cur-
rent time tc , we aim to minimize the maximum query latency in Q
while bounding all queries’ result errors. Formally, the objective is
min(maxq∈Q Lq) st . ∀q ∈ Q (ϵq ≤ bq), where Lq , ϵq , and bq are
query q’s latency, error, and required error bound, respectively.

This Min-Max objective only concerns the latency of the query
that bottlenecks the system. To provide the best experiences to all
query users, we can alternatively consider the Min-Avg objective
of minimizing the average latency of all currently active queries.
We discuss this variant in Section 4.2.

2.3 Processing Framework
The overall query processing framework, shown in Figure 3, con-
sists of three components, namely the user clients, the coordinator
node, and the infrastructure (with edge sketches on its top). The
internal of each component is detailed as follows.

User Client. When a query SQM(R,T ,b) is registered in the client,
QC is invoked in a period of ∆t . Following the merging method
presented in Section 2.1, QC is executed by fetching thematerialized
quantile sequences from edge sketches on the infrastructure. To
improve the efficiency of QC at the client, we employ an incremental

historical
results

Optimization on
Sketches for a Query

Grid-based Query
Decomposition

Error Bound
Determination of Cell-

wise Subqueries
Edge Sketches for a

(Sub)Query…

QC in a
period of Δt

incremental result fetching

Infrastructure

Client Coordinator Node
query

information

No

Yes

a set of cell-based
subquerieserror

bound error
bound

optimal data
fractions

concurrent query
processing?

……

storemerge

merge

quantile
sequence(s)

Section 3

Section 4.1

Section 4.2
allocate

Figure 3: The SQM processing framework.

t1 t2 t3 t4 t5 t6 t7 t8
q1T1

T2 q2

q1

UT1 UT2 UT5 UT6

query times

UT7

T1

Δt Δt

incremental
results at t6next query of

q1

Figure 4: Incremental SQM processing.

mechanism. In particular, we divide the time into ∆t-sized unit time
windows (UTs). We align the QC times at clients with the starts
of UTs. When QC is invoked, the client fetches only the quantile
sequences of the last UT from the edge sketches. To realize this,
an incremental result fetching module sends an incremental query
SQM(R,∆t,b) to the coordinator2 and waits for the results from edge
sketches. Once the quantile sequences of the incremental query
are fetched, they will be merged with those from historical UTs
within (tc − T , tc] to answer the overall query. We assume T is
integer multiples of the small-sized ∆t . The fetched sequences will
be cached as historical results for QCs at future times.
Example 1. Figure 4 shows two SQM queries q1 and q2 with moni-
toring time span T1 = 5∆t and T2 = 3∆t , respectively. At QC time
t6, only the corresponding quantile sequences in UT5 are fetched for
the two queries. For q1, the fetched sequences are merged with histori-
cal results from UT1 to UT4 as the current query temporal range of
q1 is (t1, t6]. Likewise, the fetched sequences are merged with those
from UT3 and UT4 to answer q2. When it goes to the next QC time
t7 = t6 +∆t , the incremental result in UT6 is fetched to answer q1 for
the new temporal range (t2, t7]. Note that q2 has been unregistered
before t7 and no incremental result is computed for q2 at t7.

Coordinator. It is a special edge node that allocates edge sketches
on the infrastructure and optimizes their use according to the in-
cremental queries it receives. It can process an individual query
with exclusive sketches, or process concurrent queries with shared
sketches. The former is suitable when resources are abundant but
the latency requirement is critical; the latter provides an economic
way to serve multiple ordinary query users simultaneously.

Processing Queries Individually. The coordinator assigns sketches
to SQM(R,∆t,b). In particular, a sketch is allocated on each BS whose
wireless coverage intersects with R. At one time, the coordinator
optimizes the use of allocated sketches. The goal is to achieve the
minimum query latency while guaranteeing the error bound. To
this end, it estimates the optimal fractions of data processed at edge

2If the result errors are bounded by b for all incremental queries, the result error of
the overall query will also be bounded by b . The proof is obvious and hence omitted.

sketches. The detailed techniques will be given in Section 3. The
estimated data fractions will be informed when allocating sketches.

Processing Queries Concurrently. The coordinator employs a grid
to partition the space into cells and allocates edge sketches in ad-
vance for each cell. When processing multiple queries concurrently,
the coordinator first decomposes each query SQM(R,∆t,b) as a set
of cell-based subqueries SQM(ci ,∆t,b) where ci is a cell in approxi-
mating R. Then, the error bounds of all cell-based subqueries are
determined globally. The goal is to 1) bound the result errors of all
concurrent queries and 2) minimize the maximum latency of all
subqueries. The grid-based query decomposition and error bound
determination of subqueries will be detailed in Sections 4.1 and 4.2,
respectively. Finally, the optimization on sketches is applied to each
subquery using the determined error bound. To answer a query
in the user client, the quantile sequences of all its subqueries are
fetched. Note that a subquery may be related to multiple queries.

Infrastructure. Suppose a sketch has been allocated to serve a
(sub)query SQM(r ,∆t,b), where r can be either a spatial range R or
a cell ci . The sketch summarizes the streaming data within r on the
BS. When a UT finishes, the sketch generates the quantile sequence
of the UT and sends it to the corresponding client(s). The sketches
maintain the optimal data fractions from the coordinator by for-
warding data to sketches on other BSs. Accurate data forwarding
control can be implemented by the 5G Xn interface protocol [1].
Using this protocol, BSs can synchronize the data fraction informa-
tion they receive and can reach a data redirection agreement for
each mini-batch of streaming data. We refer interested readers to
separate coverages [1, 7] of the data forwarding controls that serve
as the underlying technology of our study. Data forwarding be-
tween devices and BSs via fiber is usually 100x faster than wireless
forwarding [15]; therefore, forwarding does not delay the query
processing as data are continuously streaming in.

Discussion of Component Failure. An edge computing system
may encounter node failures, which are typically handled by failover
mechanisms [25, 38] that enable switching to replica nodes. For
the coordinator, we can maintain two or more replicas that act
simultaneously in different physical machines. An edge sketch fol-
lows the coordination command received first as the coordinator
replicas send the same command. As to be shown in Section 5, the
coordinator is quite lightweight, so replicating the coordinator and
having multiple active coordinator instances is cost-effective. For
a failed edge sketch, a standby backup instance can be launched
to recover the data processing. To reduce the latency, proactive
strategies [5, 19] based on failure prediction have been proposed
that activate a backup instance before failure. This issue is beyond
the scope of this study, and we leave it for future work.

3 SKETCH OPTIMIZATION FOR A QUERY
This section optimizes the use of sketches for efficient and error-
bounded processing of an incremental (sub)query SQM(r ,∆t,b). In
this section, a query q means an incremental (sub)query.

3.1 Query Error Analysis
We use S(q) to denote the set of edge sketches allocated to the query
q. Based on Equation 1, we can derive the query error ϵq as

ϵq =
∑

Si ∈S (q)
ϵiηi , (3)

where ϵi and ηi are the sketch (approximation) error and fraction
of processed query data of Si , respectively.
Lemma 1. Let Nq be the query data volume, the more data processed
by the sketches with lower errors, the lower the query error.

Proof. Let sketches Si , Sj ∈ S(q) and ϵi > ϵj . Suppose ∆N (> 0)
readings are transmitted from Si to Sj , we have ϵi (ηi − ∆N /Nq) +

ϵj (ηj +∆N /Nq) < ϵiηi +ϵjηj . As the data fractions of other sketches
in S(q) remain the same, the query error after transmission will be
lower than before according to Equation 3. □

The following lemma derives the maximum fraction of data that
can be processed for each edge sketch in guaranteeing bound b.
Lemma2 (Error-boundedData Fractions). For any sketch Si ∈ S(q),
its fraction of processed data ηi must be no higher than

η⊤i =

{
(b − ϵ ′⊥)/(ϵi − ϵ

′
⊥), ϵi > b,

1, otherwise,
(4)

where ϵ ′⊥ = min({ϵj | Sj ∈ S(q)∧ j , i}) is the lowest approximation
error of other used edge sketches.

Proof. Let ϵ ′ be the error of merging all sketches except Si . Based
on Equation 3, the following inequality guarantees bound b:

ϵiηi + ϵ
′(1 − ηi) ≤ b ⇒ (ϵi − ϵ

′)ηi ≤ (b − ϵ
′). (5)

Two cases are discussed: (1) When ϵi ≤ b, the inequality must
hold. If b ≥ ϵi ≥ ϵ ′, it always holds as ηi ≤ 1; if b > ϵ ′ > ϵi , it
always holds as ϵi − ϵ ′ < 0 while b − ϵ ′ > 0. At this point, there is
no limitation for ηi but ηi ≤ 1. (2) When b < ϵi , some data must be
processed by a sketch whose error is lower than b. We consider the
most optimistic situation ϵ ′ = ϵ ′⊥ = min({ϵj | Sj ∈ S(q) ∧ j , i})
that all other data is processed at a sketch with the lowest error. To
ensure the inequality, we have ηi ≤ (b − ϵ ′⊥)/(ϵi − ϵ

′
⊥). Note that

(b − ϵ ′⊥)/(ϵi − ϵ
′
⊥) ∈ [0, 1) as ϵ

′
⊥ ≤ b < ϵi . □

Example 2. Suppose query error bound b = 0.04. We compute the
error-bounded fractions of the sketches in S(q) as follows.

Si ∈ S (q) S1 S2 S3 S4

sketch error ϵi 0.08 0.02 0.05 0.1

ϵ ′⊥ 0.02 0.05 0.02 0.02

error-bounded fraction η⊤i 0.33 1 0.67 0.25

Take S1 as an example, its error ϵ1 = 0.08 and the lowest error of
other used sketches is ϵ ′⊥ = 0.02. Therefore, η⊤1 = (0.04−0.02)/(0.08−
0.02) = 0.33, meaning S1 can maximally process 33% of all query
data for bounding query error. It can be found that the lower the error
of a sketch, the higher the fraction of data it is allowed to process.

3.2 Query Latency Analysis
The query latency Lq is affected by three aspects, namely the latency
LRT of reading transmission from the device to the edge node, the

tp tc tres
the first reading
received at edge

Δt
tfr tdstlr

LDS

LRT

LQE

Lq
previous

query time
current

query time
result

received

the last reading
received at edge

the last
quantile

sequence
generated

Figure 5: An example of query latency at query time tc .

latency LDS of data sketching at distributed edge nodes, and the
latency LQE of QC execution.
Example 3. Figure 5 shows the latencies related to the query. In
particular, tp and tc are the previous and current query times such
that tc − tp = ∆t . Besides, tres is the time when getting the result for
query issued at tc , and query latency Lq = tres − tc (see Definition 3).
Suppose tlr is the time when the edge last receives a reading of the
current UT, then the reading transmission latency LRT equals tlr − tc .
Note that readings are streaming in the system despite the query
time, so LRT is decided by the last received reading only. If tfr is
the time when the edge first receives the relevant reading and tds
is the time when edge generates the last quantile sequence, the data
sketching latency isLDS = tds−tfr . Further, the QC execution latency is
LQE = tres−tds , consisting of the time needed to fetch the last quantile
sequence, merge all quantile sequences, and return the quantiles.

A sketch’s latency grows with the processed data volumes be-
cause it must process items sequentially. Let Ni and ℓi be the pro-
cessed data volume and unit processing latency (UL) on an item of
a sketch Si , its latency is roughly ℓiNi . In our setting, LDS is the
maximum processing latency of all sketches, i.e., max({ℓiNi | Si ∈
S(q)}). As reported in Figure 8, the latency can reach 2 seconds
when 5M data is sketched at an edge node. In contrast, LRT is negli-
gible (several microseconds in 5G network [3]). In the streaming
data processing, LRT is dominated by LDS.

According to Figure 5, we model the latency Lq as follows.

Lq = LDS − (tc − tfr)+ LQE, LDS = max({ℓiNi | Si ∈ S(q)}), (6)

where tfr is the time when first receiving a reading of the UT. The
latency LQE is small and stable as the edge quantile sequences to
fetch and merge are small-sized. Also, tc − tfr ≈ ∆t . Therefore, we
regard LQE and tc − tfr as constants and omit them in analysis. The
query latency optimization boils down to minimizing LDS3.

The following lemma gives the ideal situation of processed data
fractions for achieving the lowest processing latency.
Lemma 3 (Latency-optimized Data Fractions). Let ℓi be the UL of
Si . Not considering the error bound, the processed data fractions in
achieving the lowest processing latency satisfy

∀Si ∈ S(q),ηi = 1/(ℓi
∑

Sj ∈S (q)
1/ℓj).

Proof. The lowest processing latency is achieved as L⊥ = ℓ1N1 =
. . . = ℓKNK ,K = |S(q)|, i.e., the latencies of all sketches are equal. We
prove it by contradiction. Suppose a lower latency L′ < L⊥. Let N ′i be
the data volume of Si in the case of L′. Then, ∀Si ∈ S(q), ℓiN ′i ≤ L′ <
L⊥ = ℓiNi ⇒ ∀Si ∈ S(q),N ′i < Ni . We then have

∑
Si ∈S (q) N

′
i <

Nq , which violates the fact
∑
Si ∈S (q) N

′
i = Nq .

3When LDS ≤ tc − tfr ≈ ∆t , the query latency equals LQE and cannot be optimized.
Nevertheless, we aim to minimize LDS to allow more frequent QC invocation.

S1 S2 S3 S4 latency rest fraction η
UL (unit: us) 6 18 8 4

error-bounded fractions 0.33 1 0.67 0.25
the first try 0.28 0.1 0.21 0.42 180 ms 1 – 0.25=0.75

the second try 0.36 0.12 0.27 0.25 216 ms 0.75-0.33 = 0.42
the third try 0.33 0.13 0.29 234 ms 0.42-0.13-0.3=0

optimal fractions 0.33 0.13 0.29 0.25 234 ms

Figure 6: A running example of data fraction estimation.

Let a =
∏

Si ∈S (q) ℓi and L⊥ = ℓ1N1 = . . . = ℓKNK = aNu . Then
we have Ni = aNu/ℓi and∑

Si ∈S (q)
Ni = Nq

⇒
∑

Si ∈S (q)
aNu/ℓi = Nq

⇒ L⊥ = aNu = Nq/
(∑

Si ∈S (q)
1/ℓi

)
.

(7)

Correspondingly, the ideal processed data fraction of each sketch Si is
ηi = (L⊥/ℓi)/Nq = 1/(ℓi

∑
Sj ∈S (q) 1/ℓj). □

Example 4. Continued to Example 2, below we list the UL of each
sketch and compute their latency-optimized fractions.

Si ∈ S (q) S1 S2 S3 S4

unit processing latency (UL) ℓi 6 us 18 us 8 us 4 us

latency-optimized fraction ηi 0.28 0.1 0.21 0.42

Suppose the total data volume is Nq = 10M (million) and it is
divided among the four sketches. The lowest latency of edge sketching
is 6 us · 2.8M ≈ 18 us · 1M ≈ 8 us · 2.1M ≈ 4 us · 4.2M ≈ 180ms .
Intuitively, a larger fraction is given to a sketch with lower UL.

3.3 Data Fraction Estimation for Edge Sketches
Ideally, we use the latency-optimized fractions in Lemma 3 for used
sketches. However, if a sketch’s processed data fraction exceeds its
error-bounded fraction in Lemma 2, the error bound b cannot be
guaranteed.

To optimize the query latency while bounding the error, we
design a greedy algorithm to find the optimal fractions of sketches.
In particular, we assign data fractions to sketches tomake them have
the same low latency. If the assigned fraction of a sketch reaches
its error-bounded fraction, we mark it as saturated and it ends up
with taking the error-bounded fraction. We repeat assigning the
rest data fractions among unsaturated sketches for achieving the
same low latency of them. The repeat stops once no new saturated
sketch is found. Figure 6 gives a running example.
Example 5. Continued to Example 4, the initial fraction to assign
is η = 1 (corresponding to the total volume Nq = 10M). In the first
try, sketches are assigned with their latency-optimized fractions in
Example 4 and the expected latency is 180 ms. However, S4’s assigned
fraction 0.42 exceeds its error-bounded fraction 0.25 (shown in the
red cell). Therefore, S4 is marked as saturated and the rest fraction is
updated as η = 1 − 0.25 = 0.75. In the second try, we assign the rest
fraction 0.75 to S1 to S3 for their same low latency, resulting in 0.36,
0.12, and 0.27. The expected latency becomes 0.36·10M ·6us ≈ 216ms .
Now we find S1 saturated (0.36 > 0.33) and S1 finally takes fraction
0.33. The rest fraction is updated as η = 0.75 − 0.33 = 0.42. In the

1 2 3 4 5 6
1
2
3
4
5

5
R4q4.

R3q3.

R2q2.

R1q1.

Covered Cells Intersecting Cells

q1 c3,1 c4,1 c3,2 c4,2 c3,3 c4,3
q2 - c4,3 c4,4 c5,3 c5,4

q3 c3,3 c3,4 c4,3 c4,4 c2,3 c2,4 c2,5 c3,5 c4,5

q4 c2,5 c1,4 c1,5 c1,6 c2,4 c2,6
c3,4 c3,5 c3,6

c4,3

Figure 7: An example of grid-based query approximation.

third try, η = 0.42 is divided into 0.13 for S2 and 0.29 for S3. The
latency becomes 0.13 · 10M · 18 us ≈ 234ms . Both S2 and S3 are not
saturated in this try. Finally, the fractions are 0.33, 0.13, 0.29, and
0.25. The optimal latency is 234 ms, bottlenecked by S2 and S3.

We always try to make the unsaturated sketch(es) reach the same
latency to keep the overall latency to a minimum. Our estimation
will always convergent as long as there exists a sketch whose error
below the bound b. In Example 5, if we put all data at S2 (its error
0.02 < b = 0.04), the query error will be bounded.

The data fraction estimation is formalized in Algorithm 1, which
takes the error bound b along with the errors and ULs of edge
sketches as input and outputs the optimal fractions in an array A.
The algorithm has time complexity of O(K2), and the sketch count
K is very small in practice.

Algorithm 1: Data Fraction Estimation
Input: query error bound b , errors ϵ1, . . . , ϵK and ULs ℓ1, . . . , ℓK of edge

sketches in S (q)
Output: optimal fractions A = [η1, . . . , ηK]

1 initialize a set S ← {1, . . . , K }; initialize a K -size array A;
2 rest fraction to assign η ← 1; compute η⊤i in Lemma 2; round r ← 0;
3 while η > 0 do
4 r + +; z ←

∑
j∈S 1/ℓj ; flag ← true;

5 for j = 1 to K and j ∈ S do
6 ηrj ← η/(ℓj · z); // for the same low latency

7 if ϵj > b and ηrj ≥ η
⊤
j then

8 A[j] ← η⊤j ; // Sj is saturated at round r
9 S ← S \ j ; flag ← false;

10 η ← η − η⊤j ; // deduct the rest fraction

11 else A[j] ← ηrj ;

12 if flag then break;

13 return A;

4 CONCURRENT QUERY PROCESSING
4.1 Grid-based Query Decomposition
Figure 7 shows the spatial ranges of concurrent queries q1 to q4. It
also lists the relevant cells that overlap with each query’s spatial
range.We differentiate covered cells (CCs) and intersecting cells
(ICs) to a query. The former is fully covered by the query’s spatial
range, whereas the latter only partially intersects.
Example 6. The cell c3,1 in the 3rd row and 1st column of the grid
is a CC of q1, while c4,3 is an IC of q1. A CC of a query may be an IC
of another one, e.g., c4,3 is an IC of q1 and q2 while a CC of q3. The
query result of c4,3 can be reused for q1, q2, and q3.

We denote the IC set and CC set of q by q.IC and q.CC , respec-
tively. When answering q, we should include all cells in q.CC as
the data of a CC must be relevant. However, for an IC of q, whether

it is included or excluded, some additional error is introduced. If we
include the IC, some irrelevant data out of the monitoring range
is involved in QC; if we exclude it, some relevant data within the
actual monitoring range is discarded. Hence, we should analyze
which of the two options is less harmful to the query result.

Let Ei and CN i refer to the result error and processed data vol-
ume of a cell ci , respectively. We bound the error Ei by a predefined
value bi , whose determination is to be discussed in Section 4.2. Let
RNk and INk be the volumes of relevant data and irrelevant data of
a cell ck ∈ q.IC , respectively. According to the mergability property
in Equation 1, the actual query error ϵq is

ϵq =

∑
ci ∈q .CC EiCN i +

∑
c j ∈q .IC EjRN j∑

ci ∈q .CC CN i +
∑
c j ∈q .IC RN j

. (8)

Let ck ∈ q.IC , X =
∑
ci ∈q .CC EiCN i +

∑
c j ∈q .IC\ck EjRN j and

Y =
∑
ci ∈q .CC CN i +

∑
c j ∈q .IC\ck RN j , Equation 8 is rewritten as

ϵq = (X + EkRNk)/(Y + RNk). We proceed to analyze the errors
of including and excluding ck in approximating q.

When using ck to approximate q, the volume INk of irrelevant
data is involved. We associate the error 1 with this part of irrelevant
data because such data should not be involved. The resultant query
error when including ck is

ϵq+k = (X + EkRNk + INk)/(Y + RNk + INk). (9)

When not using ck to approximateq, the volume RNk of relevant
data is discarded. Only volumeY of data has been considered in QC,
their corresponding error is X/Y . However, this error only covers
partial data of the query but not the volume RNk of discarded data.
For the discarded part of relevant data, the error 1 is associated.
Therefore, the query error when excluding ck is

ϵq\k = (X/Y ·Y +RNk)/(Y +RNk) = (X +RNk)/(Y +RNk). (10)

In approximatingq, we include each cell ck ∈ q.IC if ϵq+k < ϵq\k
and exclude it otherwise. The errors ϵq+k and ϵq\k are related to the
volumes CN or RN , IN of the cells. These data volumes are obtained
via a quick sampling. For example, to estimate RNk of ck in a UT,
we sample the receiving speed of the data relevant to q.R in ck in
a short time interval, and multiply the sampled speed by ∆t . The
sampling is implemented as a background thread, asynchronous to
the incremental SQM processing. It is invoked a little earlier than a
query time, without query latency incurred.

4.2 Error Bounds of Cell-based Subqueries
Suppose a set C(q) of cells are determined in approximating a
query q = SQM(R,∆t,bq). Then, q is decomposed as subqueries
{SQM(ci ,∆t,bi) | ci ∈ C(q)}, where bi is the error bound set to the
cell ci . The error bounds of cells in C(q) must altogether ensure
that the query error ϵq in Equation 8 is bounded by bq .

Given ci ’s bound bi , we perform the data fraction estimation
(Algorithm 1) to achieve the optimal latency (OL) of ci under the
restriction of bound bi , denoted as OLi . A query q is aggregated
from its subqueries on cells. Therefore, its query latency is bottle-
necked by themaximumOL of cells inC(q). Recall that our problem
in Section 2.2 is to minimize the maximum latency of concurrent
queries. From the perspective of cells, the problem is equivalent
to minimizing the maximum OL of the approximation cells of all
concurrent queries. Therefore, we formulate the determination of

cell error bounds as follows. Given a set Q of concurrent queries
and their approximation cells in C =

⋃
q∈Q C(q), the objective is

argmin{bi |ci ∈C } max({OLi | ci ∈ C}) st. ∀q ∈ Q(ϵq ≤ bq).

We should determine the error bounds holistically for cells in C
since the relationship between cells and queries is many-to-many.

We analyze the impact of cell error bound on the OL of a cell.
Lemma 4. Given two error bounds bi < b ′i set to a cell ci , their
corresponding OLs have OLi ≥ OL′i .

Proof. Suppose we run Algorithm 1 with bi , resulting in a set of
saturated sketches (SSs) and a set of unsaturated sketches (USs). The
SS set may be empty. The current OLi is bottlenecked by the USs
that maintain the equal latency (see Example 5). When the bound is
loosened, the error-bounded data fractions of sketches (see Equation 4)
increase. As a result, those SSs (if exist) can process more data than
before. Accordingly, those USs take fewer data, and the maximum
latency of the USs decrease. Hence, the corresponding OL′i to b

′
i must

be lower than OLi to bi . If the SS set is empty for bi , using a loosened
b ′i will not change the data taken by each US. The corresponding OL′i
equals OLi . To sum up, for any b ′i > bi , we have OL′i ≤ OLi . □

Lemma 4 reveals that the OL of a cell can be reduced by relaxing
the cell error bound. Still, the bound relaxation should not violate
the bounding of overall query error. Considering both aspects, we
propose a relaxation algorithm to find qualified cell error bounds
corresponding to the optimal OLs. First, we set the bound of each
cell to its minimum allowable value. This value is equal to the
lowest error of edge sketches in that cell. At this time, the errors of
all queries must be bounded4. Afterward, we relax the bound of the
cell that currently bottlenecks the concurrent query processing. In
this way, the OL of the bottleneck cell can be reduced, and so is the
maximum processing delay of the system. We stop the relaxation
of a bottleneck cell when 1) the relaxed cell error bound increases
a query’s error to its bound and 2) the last relaxed cell is still the
bottleneck. These conditions indicate that the maximum query
latency cannot be reduced anymore.

The procedure is formalized in Algorithm 2. In particular, lines 1–
3 construct the approximation cell set. Lines 4–6 set the minimum
allowable error bound of each cell and get the corresponding query
error and OL. Lines 8–20 iteratively pick the bottleneck cell and
relax its error bound for a reduced OL. Specifically, line 10 calls a
function relax(·) to loose bi for the current bottleneck ci . Lines 11–
14 find a bound b ′i that just bounds the error of a query qj relevant
to ci . In line 14, (ϵqNq − EiCN i) corresponds to the results of
all other cells and CN i is the full data volume of the bottleneck
cell ci . When computing the error of qj , cells in C(qj) use the
full data volume because each cell has been included as a whole.
The bound b ′i for each relevant query is added to the set B. If the
relaxed boundbi > min(B), then a relevant query must not be error-
bounded if using bi . In this case, the minimum bound in B is used
(line 16), and the optimal fractions are reevaluated (line 17). If the
corresponding OLi is still the highest among all cells inC , it means
the latency optimization should end. This is because ci ’s bound
cannot be relaxed anymore as some its relevant query reaches the
4If a specified query error bound cannot be satisfied on the minimum allowable errors
of cells, it is unaffordable to the infrastructure and will be recognized for amendment
in the user client. Therefore, we do not consider such unaffordable queries.

error bound. Then, the loop breaks (line 18), and current cell error
bounds are returned (line 21). Otherwise, ci uses the bound bi from
relax and the data fraction estimation is executed to get new OLi
and Ei (line 19). After that, the approximation cell set of each ci ’s
relevant query is updated as ci ’s error has changed (line 20). Further,
lines 7–8 control the number of iterations based on the maximum
data volume maxCN of cells, which determines the data sketching
latency in processing concurrent queries. When the data sketching
latency is relatively low, too many iterations of Algorithm 2 will
not yield improvements, but will offset the efficiency gains from
relaxation. To ensure that the relaxation time is a minor part of the
overall latency, we set hyperparameter β to 5E-6.

Algorithm 2: Cell Error Bound Determination
Input: error bounds of queries, data volumes of cells
Output: error bounds of cells

1 cell set C ← �;
2 for each query qj ∈ Q do
3 find the approximation cell set C(qj); C ← C ∪C(qj);

4 for each cell ci ∈ C do
5 bi ← the minimum error of sketches of ci ;
6 run Algorithm 1 on bi to obtain OLi and Ei ;

7 maxCN ← max({CN i | ci ∈ C }) // relevant to overall latency

8 while iter < β ·maxCN do
9 update C and find ci from C with the maximum OLi ;

10 relaxed error bound bi ← relax(bi); iter + +; B ← �;
11 for each relevant query qj of ci do
12 bq ← error bound of qj ;
13 ϵq ← current query error of qj ;
14 b′i ← (bqNq − (ϵqNq − EiCN i))/CN i ; add b′i to B ;

15 if bi ≥ min(B) then
16 bi ← min(B); // to bound all relevant queries

17 run Algorithm 1 on bi to obtain OLi and Ei ;
18 if OLi is the maximum on C then break;

19 run Algorithm 1 on bi to obtain OLi and Ei ;
20 update C(q) for each q relevant to ci ;

21 return {bi | ci ∈ C };

Relax Function. We employ a relaxation factor λ > 1 to loosen the
boundbi tobi ·λ. If λ is tuned large, the relaxed boundbi will quickly
exceed the corresponding min(B). The error of a relevant query
will reach the bound such that all cells related to that query can no
longer be relaxed. The global optimum may be missed. Conversely,
if λ is small, a relaxation may reduce the cell’s OL slightly. The
convergence of Min-Max will be slow. We study the effect of λ on
the cell error bound determination algorithm in Section 5.3.
Min-Avg Variant. We can solve the Min-Avg problem (see Sec-
tion 2.2) under the same framework. It only requires modifying
some convergence conditions of the relaxation. Specifically, each
time we relax a cell that bottlenecks the most number of queries, to
maximally reduce the sum (and average) of all query latencies. Such
relaxation repeats until we find that no cells in C can be relaxed (a
cell cannot be relaxed when some its relevant query has reached
the error bound). Several changes are needed in Algorithm 2. Line 8
changes to “whileC is not empty and iter < β ·maxCN do”; line 9
changes to “update C and find ci from C that bottlenecks the most
queries”; and line 18 changes to “C ← C \ C(qj) where qj corre-
sponds to the minimum bound in B”.

5 EXPERIMENTAL STUDIES
Similar to existing studies [13, 21, 44, 45, 55], we conduct exper-
iments on a single PC (with a 1.8 GHz CPU and 8 GB memory).
This way makes it easy to manage the simulation of different edge
sketches and to measure the overall query latency.

5.1 Experimental Settings
Space and Datasets. We simulate sensor readings from a 5 km ×
5 km target space. The space is partitioned into square cells with
side length ll km. We allow for incomplete cells by division. The
readings, generated by the generic IoT data simulator [2], are of
the form [l, x, t], where l is the underlying device’s location, x is a
random measure within [0, 5000], and t is the time when the base
station received the reading. A moving device always reports the
reading to the nearest base station. According to the query latency
analysis in Section 3.2, we assume that the reading transmission
latency is dominated by the data sketching latency. Therefore, we
ignore the time when a value was produced. The speed of the
streaming data is controlled by a parameter UN , meaning that a
total of UN million readings are generated per unit time window
(UT). We fix the UT size ∆t to 2 s in all studies. The simulated data
experiments are covered in Sections 5.2 and 5.3.

We also derive a real mobility dataset from the GeoLife trajectory
project [58] as follows. We retrieve trajectory points from a 5 × 5
km2 hotspot region in Beijing for 20 days and condense the data into
one hour to get a data speed of 5 million per second. We associate
each trajectory point with a sensor value in the range [40, 100]. This
dataset embodies real-world device mobility and is evaluated in
Section 5.4. Note that any individual mobile device’s transmission
latency is invisible to the system because readings from different
devices stream continuously into the system for processing.

For ease of data replay, we save the generated data in files. When
processing queries, relevant file(s) are loaded into memory in ad-
vance, and the data is streamed in timestamp order.
Base Stations (BSs) and Edge Sketches. We generate a number
M ∈ {16, 24, 32} of BSs with fixed locations. For ease of implemen-
tation, the coverage of a BS is a circle ⃝(p, τ) centered at the BS
location p with a radius τ in [0.5, 1] km according to the character-
istics of real-world 5G BSs [3]. We disperse the BSs to make them
cover the space maximally. A BS maintains edge sketches according
to the monitoring need. To simulate different processing capabil-
ities of BSs in our runtime, we assign a random lagging factor γ
to each BS. Any sketch allocated on a BS with lagging factor γ
processes (γ − 1) · n additional dummy items (not included in QC)
per n streaming items. We vary γ in [1, 1.2] across BSs.

A sketch’s error varies within [0.001, 0.01]. Once the error of
a sketch is known, we obtain its unit processing latency (UL) as
follows. We measure the overall processing latency of the sketch
on different processed data volumes. As shown in Figure 8, the
relationship between the overall latency and processed data volume
is almost linear for different sketch errors. Therefore, we use the
slope of the line of a certain ϵ as the UL of any sketch built by ϵ .
Queries. We generate |Q | concurrent queries at a query time. The
spatial range R of a query is a random box within the space, and its
monitoring time span T is a random integer (from 1 to 10) multiple
of ∆t . The parameter ϕ in QC is chosen at random in {0.1, . . . , 0.9}.

Table 2: Parameter Settings
Parameter Meaning Setting
UN (M per UT) streaming data speed 15, 20, 25
α error bound scaling factor 1.2, 1.1, 1, 0.9, 0.8
M base station number 16, 24, 32
|Q | number of concurrent queries 30, 40, 50, 60
ll (km) cell side length 0.25, 0.5, 1
λ relaxation factor 1.05, 1.1, 1.2

The error bound b is varied in [0.01, 0.05]. To test the impact of
the strictness of error bounds, we introduce a scaling factor α to
scale the error bounds of queries. The parameter setting is listed in
Table 2, where default values are in bold.

5.2 Studies on Individual Query Processing
Baseline Methods. Processing queries individually, we evaluate
the efficacy of our proposed Algorithm 1, Data Fraction Estimation
(DFE). As no studies focus on tuning data fractions of sketches, we
introduce the following alternatives.
• No DFE (NDFE): each allocated sketch takes the original data
volume when processing a query.
• Error-first DFE (EDFE): when a saturated sketch is found, its
excess data fraction is undertaken by an unsaturated sketch with
the minimum approximation error; this procedure is repeated
until no new sketch becomes saturated.
• Latency-first DFE (LDFE): differs from EDFE in that the excess
data fraction is always undertaken by an unsaturated sketch with
the minimum UL.
• Stochastic DFE (SDFE): the excess data fraction is undertaken by
a randomly selected unsaturated sketch.
• Best-one-takes-all (BTA): all data is forwarded for processing to
the best sketch with the minimum UL in {si ∈ S(q) | ϵi ≤ b}.

Metrics. Recall from Section 3.2 that LDS, the maximum processing
latency of used sketches, is usually the query latency bottleneck.
Therefore, we use LDS as the efficiency metric, meaning that la-
tency measures refer to LDS unless stated otherwise. We report the
average LDS across 50 individual queries. A smaller LDS allows QC
to be invoked more frequently without accumulating latency. E.g.,
LDS < 1 s means that a user client can monitor the spatiotemporal
quantiles every second.

We also consider other latencies: the execution times of DFE
and *DFE are always 20–50 us; the QC execution latency LQE is
around 1–2 ms as tuples are always small (less than 10k when the
data speed reaches 25M per UT). As these latencies are small, we
omit them in the evaluation. We do not measure the query latency
directly because it is influenced by multiple aspects and thus is hard
to compare and analyze. E.g., when the query interval ∆t exceeds
the data sketching latency LDS, the query latency becomes the very
small QC execution latency.
Effect of Data Speed UN . The latency using different methods
is reported in Figure 9. With a larger UN , each allocated sketch
must process more data. Hence, the latency grows steadily with a
growing UN for all methods. However, the proposed DFE clearly
outperforms the alternatives. WhenUN = 15,DFE takes around 500
ms to process streaming data. In contrast, NDFE using the original
received data fractions takes more than 1.4 s. Moreover, NDFE does
not ensure the error bound because it omits data forwarding. As

another method that does not tune the data fraction, BTA processes
all relevant data in a single BS with error guarantees and never
utilizes distributed resources. As a result, BTA’s latency is orders of
magnitude higher than those of the others and grows more rapidly
when increasing UN . Although a more powerful BS can improve
latency, this is not as cost-efficient as parallel data processing with
many lightweight edge nodes. In general, BTA is unattractive due
to its over-reliance on a dedicated processing node.

The variants EDFE and SDFE incur longer latency than NDFE.
Both move excess data to ensure the error bound at the cost of
higher latency of unsaturated sketches. EDFE performs worse than
SDFE. EDFE always chooses an unsaturated sketch with the lowest
error, which usually corresponds to a high UL. This yields a lower
query error but a higher latency compared to the stochastic strategy.
In contrast to EDFE, LDFE always moves excess data to a single
unsaturated sketch with the lowest UL. Thus, its latency is lower
than those of the other two variants. However, LDFE is inferior to
DFE that is not limited to using only a single unsaturated sketch
to achieve a minimum increase in latency. In general, when the
data speed reaches (25/2 = 12.5) million per second, the latency
of DFE remains below 1 s. This enables QC every second, which is
promising in many monitoring applications.
Effect of Strictness of Error Bounds. As shown in Figure 10,
when increasing α for looser query error bounds, the latencies of all
methods decrease. With a looser error bound, a sketch can process
more data before becoming saturated, and lower overall latency is
achieved. The proposed DFE clearly performs best. Moreover, its
latency increases the slowest when using increasingly strict error
bounds. When α = 0.8, DFE’s latency remains below 1.5 s, while
BTA takes over 32 s and the others need 3–4 s. This shows that DFE
can support more stringent error bounds.

The error-first EDFE always incurs the highest latency that also
increases much faster with stricter error bounds. The latency-first
LDFE performs better than the stochastic and error-first strategies.
Effect of the Number (Density) of BSs. Referring to Figure 11,
using more BSs reduces the latency for each method. As more
sketches can be allocated to process a query in parallel, the process-
ing time of a single sketch decreases when the query data volume
is fixed. DFE always performs the best and is affected the least by
the density of BSs. With only 16 BSs, it can still process streaming
data with a latency within 1 s, mainly due to its estimated optimal
data fractions. Interestingly, the latency gap between BTA and the
others decreases when using more sketches. This is because BTA
can potentially find a sketch with lower UL to process all data.

5.3 Studies on Concurrent Query Processing
Baseline Methods. We evaluate the efficacy of the proposed cell-
based mechanism (CB) at processing concurrent queries. We con-
sider the Min-Max and Min-Avg objectives (see Section 2.2). We
include the following baselines for comparison.
• Query-wise mechanism (QW): a set of sketches is allocated for
each concurrent query.
• Including/Excluding all ICs in CB (CB-I/CB-E): each query al-
ways includes/excludes all its ICs in approximation.
• CB without relaxation strategy (CB\R): the error bound of the
current bottleneck cell is set directly to the minimum error bound

0 5 10 15 20
0
2
4
6
8

10
12
14
16

O
ve

ra
ll

La
te

nc
y

(s
)

Total Data Volume (M)

 ε=0.002
 ε=0.005
 ε=0.02

Figure 8: UL measurement.

15 20 25

1k

10k DFE NDFE
 EDFE LDFE
 SDFE BTA

sk
et

ch
 la

te
nc

y
(m

s)
UN (M per UT)

Figure 9: Latency vs UN .

0.8 0.9 1.0 1.1 1.2
1k

10k

sk
et

ch
 la

te
nc

y
(m

s)

α

 DFE NDFE
 EDFE LDFE
 SDFE BTA

Figure 10: Latency vs α .

16 24 32

1k

10k

sk
et

ch
 la

te
nc

y
(m

s)

Number of BSs

 DFE NDFE
 EDFE LDFE
 SDFE BTA

Figure 11: Latency vs #(BS).

15 20 25
400

800

1200

1600

2000

m
ax

. l
at

en
cy

 (m
s)

UN (M per UT)

 CB QW
 CB-I CB-E
 CB\R CP

Figure 12: Latency vs UN .

of its relevant queries; this is repeated when the current bottle-
neck cell cannot be tuned due to the error bounding restriction.
• Centralized processing (CP): sketches are allocated for each di-
vided cell and are gathered at a centralized processing node that
processes each query in parallel by merging a corresponding set
of gathered sketches. To ease the management of sketches, a uni-
fied approximation error is employed that satisfies the strictest
error bound among all queries.

For all methods above except CP, we use the DFE algorithm (Algo-
rithm 1) to optimize the use of allocated sketches.

Metrics. All methods can guarantee the error bounds of concurrent
queries. Therefore, we omit an evaluation of query errors. For effi-
ciency, we measure themaximum (average resp.) processing latency
of concurrent queries for the Min-Max (Min-Avg resp.) problem
and the total memory cost. Since our memory size cannot support
running many queries in parallel inQW, we process queries serially
and sum up their memory cost. We assume the edge resources of
real-world BSs are sufficient and do not delay the parallel process-
ing in QW. We also measure the execution time of the cell error
bound determination (EBD) algorithm (Algorithm 2). Note that we
include the EBD time when measuring the maximum (average)
processing latency. Each parameter is studied with the others fixed
to their defaults.

5.3.1 Solving the Min-Max Problem. Effect of UN . The maximum
processing latency, EBD time, and memory cost are reported in
Figures 12 to 14. As readings stream into the system faster, the
latency increases steadily for each method. QW takes the least
time because it runs queries in parallel with exclusive resources.
However, QW must allocate sketches for each query and thus
incurs a huge memory overhead, as reported in Figure 14. The large
memory overhead also reveals thatQW processes more data during
query answering. Next, CB only consumes around 150 ms more
than QW in each test while consuming 5–6 times less memory, due
to its ability to reuse sketches at the cell level. Thus, each reading is
sketched only once in CB, while each reading is sketched for each
query that covers it in the case of QW. The baseline CP performs
worst because it employs a stringent approximation error for all
edge sketches, which eventually incurs higher latency. As CP needs
to merge an arbitrary set of collected data sketches to answer the
corresponding query, employing a unified sketch error is the easiest.
Next, Figure 14 shows that CP consumes about the same memory
as CB. In general, CP does not adjust sketch errors for optimizing
latency, as does our proposal. Its strategy of gathering sketches
for parallel query answering fails to exploit the performance of
the centralized node because the latency of query execution after
having collected sketches is minor (1–2 ms in the user client).

AllCB variants performworse, and their latencies increase faster.
CB-I and CB-E blindly include or exclude all ICs, resulting in worse
query errors after the grid-based query decomposition. They then
need to set stricter cell error bounds, which leads to higher subquery
processing latencies. They consume slightly less memory as they
do not check ICs. CB\R adjusts directly an encountered bottleneck
cell to its minimum latency. As a result, some other cells cannot
be optimized in subsequent iterations, and global optima may be
missed and the maximum latency in the system remains high.CB\R
uses more memory than CB, probably because its sketches are not
used optimally due to the local optima of cell error bounds.

Only CB, CB-I, and CB-E employ EBD, and thus we report their
EBD times in Figure 13. All methods can finish EBD within tens of
milliseconds, and they differ only slightly. CB-E takes 3–4 ms less
than the other two in each test because it excludes all ICs. Indeed,
the relaxation iterations in EBD are determined mainly by the error
bounds of queries. Therefore, the EBD cost scales well with UN .
Compared to CB\R and CP in terms of overall latency, the other
three methods run faster, as a benefit of using EBD.
Effect of Error Bound Strictness. The maximum latency, EBD
time, andmemory cost are reported in Figures 15 to 17.With stricter
error bounds (smaller α), all methods except CP take a longer time
to finish. CP is insensitive to α because it already sets the most
stringent sketch error. However, CP still incurs significantly higher
latencies. For example, when α = 0.8, CP needs 500 ms and 700 ms
more than CB and QW for execution, respectively. QW runs the
fastest, but it incurs significantly higher memory costs than does
CB. CB-I and CB-E are more sensitive to α as their result errors
based on query approximation are less promising. CB\R ignores
relaxation. However, stricter error bounds make it faster to stop the
optimization of cell (subquery) latency. Hence, it always runs the
slowest. The EBD times increase with a looser error bound since
EBD takes more iterations to converge. The three methods take
similar EBD times but CB-E takes the least.
Effect of Density of BSs. Figure 18 shows that the maximum
latency of each method decreases steadily when using more BSs. As
discussed in Section 5.2, more allocated sketches reduce the overall
processing latency. Thus, the memory costs in Figure 19 of each
method increase. This becomes an issue for QW since it maintains
a set of sketches for each query. A higher BS density increases
its allocated resources rapidly. However, the latency gap between
QW and CB has not increased much. All CB variants incur longer
latencies than CB, and CP always takes over 1.3 s to finish. Hence,
we focus on QW and CB in subsequent comparisons.
Effect of the Number of Concurrent Queries |Q |. Referring to
Figures 20 and 21, QW uses more time and memory when more
concurrent queries are registered, while CB is insensitive to |Q |

15 20 25

15

20

25

EB
D

 ti
m

e
(m

s)

UN (M per UT)

 CB CB-I CB-E

Figure 13: EBD time vs UN .

15 20 25
0

10k

20k

30k

40k

50k

m
em

or
y

co
st

 (M
B)

UN (M per UT)

 CB QW
 CB-I CB-E
 CB\R
 CP

Figure 14: Memory vs UN .

0.8 0.9 1.0 1.1 1.2

1k

2k

m
ax

. l
at

en
cy

 (m
s)

α

 CB QW CB-I
 CB-E CB\R CP

Figure 15: Latency vs α .

0.8 0.9 1.0 1.1 1.2

10

20

30

40

50

EB
D

 ti
m

e
(m

s)

α

 CB CB-I
 CB-E

Figure 16: EBD time vs α .

0.8 0.9 1.0 1.1 1.2
0

30k

60k

m
em

or
y

co
st

 (M
B)

α

 CB QW CB-I
 CB-E CB\R CP

Figure 17: Memory vs α .

16 24 32

600

900

1200

1500

1800

m
ax

. l
at

en
cy

 (m
s)

Number of BSs

 CB QW CB-I
 CB-E CB\R CP

Figure 18: Latency vs #(BS).

16 24 32
0

20k

40k

60k

80k

m
em

or
y

co
st

 (M
B)

Number of BSs

 CB QW
 CB-I CB-E
 CB\R
 CP

Figure 19: Memory vs #(BS).

30 40 50 60
400

600

800

1k

m
ax

. l
at

en
cy

 (m
s)

|Q|

 CB
 QW

Figure 20: Latency vs |Q |.

30 40 50 60
0

20k

40k

60k

m
em

or
y

co
st

 (M
B)

|Q|

 CB QW

Figure 21: Memory vs |Q |.

0.25 0.50 0.75 1.00

300

600

900

la
te

nc
y

(m
s)

ll (km)

 Min-Max
 Min-Avg

Figure 22: Latency vs ll.

0.25 0.50 0.75 1.00

10

20

30

EB
D

 ti
m

e
(m

s)

ll (km)

 Min-Max
 Min-Avg

Figure 23: EBD time vs ll.

0.25 0.50 0.75 1.00

10k

20k

30k

40k

m
em

or
y

co
st

 (M
B)

ll (km)

 Min-Max
 Min-Avg

Figure 24: Memory vs ll.

1.05 1.10 1.15 1.20

960

980

1000

1020

la
te

nc
y

(m
s)

λ

 Min-Max
 Min-Avg

Figure 25: Latency vs λ.

1.05 1.10 1.15 1.20

30

40

50

60

EB
D

 ti
m

e
(m

s)

λ

 Min-Max
 Min-Avg

Figure 26: EBD time vs λ.

1.05 1.10 1.15 1.20
5.4k
5.6k
5.8k
6.0k
6.2k
6.4k
6.6k

m
em

or
y

co
st

 (M
B)

λ

 Min-Max
 Min-Avg

Figure 27: Memory vs λ.

30 40 50 60
0

500

1k

av
g.

 la
te

nc
y

(m
s)

|Q|

 CB QW

Figure 28: Latency vs |Q |.

30 40 50 60
0

20k

40k

60k

m
em

or
y

co
st

 (M
B)

|Q|

 CB QW

Figure 29: Memory vs |Q |.

0.8 1.0 1.2
350

400

450

500

550

600

10

20

30

 max. latency
 EBD time

α

m
ax

. l
at

en
cy

 (m
s)

 E
BD

 ti
m

e
(m

s)

Figure 30: Latency vs α .

30 40 50 60

200

400

600

m
ax

. l
at

en
cy

 (m
s)

|Q|

 CB QW

Figure 31: Latency vs |Q |.

30 40 50 60
0

10k

20k

30k

m
em

or
y

co
st

 (M
B)

|Q|

 CB QW

Figure 32: Memory vs |Q |.

due to its efficient cell-based mechanism. When |Q | grows to 60,
the two’s latencies are equal. This highlights the scalability of CB.
Effect of Cell Side Length ll. Referring to the Min-Max measures
in Figure 22, using a smaller ll for CB reduces the maximum latency.
As more cells are used, more edge sketches are allocated to handle
queries. As shown in Figure 24, smaller ll consumes more memory.
In addition, a smaller ll incurs a shorter EBD time (see Figure 23) due
to our iteration controls in Algorithm 2. We suggest to use a larger
cell side length to reduce the memory overhead while ensuring that
the processing latency satisfies user requirements.
Effect of Relaxation Factor λ. Referring to Figure 25, using λ =
1.1 yields the lowest latency for Min-Max. Observing the EBD time
in Figure 26, using a larger λ incurs less time as the EBD algorithm
converges faster. However, a shorter EBD time does not mean a
lower latency, and using λ = 1.1 yields a lower latency because it
gets more optimal error bounds for cells by a slower convergence
procedure. Since this takes more iterations, it consumes the most
memory, as shown in Figure 27. Nevertheless, the latencies for
Min-Max are relatively close (960 vs 980 ms) when varying λ.

5.3.2 Solving the Min-Avg Problem. Effect of |Q |. Referring to
Figure 28, the average processing latency of QW increases steadily

with more concurrent queries. In contrast, CB’s latency remains
stable. However, Figure 29 reveals a linear increase in the memory
use of QW with a larger |Q |. Therefore, although CB runs slower,
it significantly reduces the computation overhead and is a very
economical option.
Effect of ll. As shown in Figures 22 to 24, a larger ll causes a higher
latency but a lower memory use. If users need lower query latencies,
the system should use smaller ll to allocate more edge resources.
Effect of λ. Referring to Figure 25, λ = 1.05 achieves the lowest
average latency. Compared to Min-Max, the latency optimization in
Min-Avg touches more cell-based subqueries, and using a smaller λ
makes it possible to optimize them better. Hence, a smaller λ works
better for Min-Avg. This is consistent with Figure 26 that indicates
that λ = 1.05 yields more iterations than does λ = 1.1.

Other parameters exhibit similar effects as when solving Min-
Max, and their results are omitted.

5.4 Studies on Real Mobility Data
Since it is difficult to obtain information about the infrastructure
in the real space (e.g., the location and coverage of BSs), we use
the simulated environment covered in Section 5.1 along with the

0.25 0.50 0.75 1.00
0

100

200

300

400

500

0

10

20

30

40

50 avg. latency
 EBD time

ll (km)

av
g.

 la
te

nc
y

(m
s)

 E
BD

 ti
m

e
(m

s)
Figure 33: Latency vs ll.

0.25 0.50 0.75 1.00
0

10k

20k

30k

40k

m
em

or
y

co
st

 (M
B)

ll (km)
Figure 34: Memory vs ll.

parameter settings covered there. Most evaluation results on the
real mobility data are similar to their simulated data counterparts.
Hence, we only report selected interesting results as follows.
Effect of Error Bound Strictness onMin-Max. Referring to Fig-
ure 30, when using a looser bound, more sketches are allowed to
process the data, thus yielding lower overall latency. Accordingly,
more EBD time is needed. More sketches also increase the memory
usage and we omit the plot due to the page limit.
Effect of |Q | on Min-Max. Referring to Figure 31, CB remains at
400 ms even when more concurrent queries are handled. When |Q |
exceeds 50, QW consumes even more time. As shown in Figure 32,
QW uses considerably more memory than CB.
Effect of ll on Min-Avg. Figures 33 and 34 show that a smaller ll
leads to lower latency (and EBD time) but much higher memory
cost. This again verifies that finer grid granularity provides higher
responsiveness but requires more edge resources.

In general, the latencies for solving Min-Max and Min-Avg prob-
lems on the real mobility data are always below 600 ms. Moreover,
the proposed cell-based mechanism (CB) achieves efficient and scal-
able processing in terms of both latency and memory consumption.

6 RELATEDWORK
Sketching andQuantile Computation (QC). Data sketching has
been studied extensively [11, 48]. Tao et al. [47] study spatiotempo-
ral aggregation using sketches, but their study considers neither
QC nor the IoT edge computing setting.

Sketching is used widely for QC. A recent survey [10] distin-
guishes between streaming [4, 6, 16, 22, 27, 30, 31, 57] and dis-
tributed [12, 17, 20, 43] sketchingmodels. The former compute quan-
tiles with limited memory by scanning incoming items only once,
while the latter reduce communication between distributed nodes
by reducing the data transmitted. Sketches are also classified as de-
terministic [6, 12, 16, 17, 27, 30, 43] or randomized [4, 20, 22, 31, 57]
according to whether sampling is used. The proposed SQM adopts
deterministic QC to shield users from randomness.

Several studies [17, 18, 20, 33, 34, 43] target wireless sensor net-
works (WSN), focusing on reducing communication costs (energy
consumption). These proposals cannot be used for solving our query
on a shared edge computing platform because they do not consider
the coordination of virtualized sketches.
Edge-aided Spatial Queries. Spatial or spatiotemporal query pro-
cessing techniques exist that utilize the edge nodes in WSN or IoT.
Some proposals exploit Tiered WSNs [39, 56] where an interme-
diate tier of storage nodes between the sink and the sensors is
available. Queries that have been studied include spatiotemporal
top-k [28, 56], aggregation [52, 54], range [39–41], and kNN [36]
queries. However, these studies focus on secure means of preserving

the integrity and privacy of query results against attacks on storage
nodes. Recent studies consider energy consumption [26] and query
latency [8, 24, 49, 51] in edge-aided spatial queries. Li et al. [26]
study aggregated multi-attribute queries based on an energy-aware
IR-tree. Xu et al. [51] generate optimal query execution plans for
privacy-preserving joins. Cai et al. [8] derive distributed query
plans for edge nodes. Lai et al. [24] compute probabilistic top-k
dominating queries using local k-skybands maintained at edges. Ve-
lentzas et al. [49] utilize edge nodes with GPUs and SSDs to speed up
kNN queries. However, these studies consider neither data fraction
estimation nor data sketching for latency optimization.
ComputationOffloading. Edge computing offloads computations
to edge devices to reduce cloud workloads and improve service re-
sponsiveness [42]. The objectives of Computation Offloading (CO)
include improved energy consumption [37, 50] or execution de-
lays [35, 53], or their combination [9, 32]. Three main CO problems
are studied [29]. (1) Studies of which tasks to offload to edge nodes
fully [9] or partially [32]. (2) Studies of the allocation of computing
resources that consider the placement or partitioning of computa-
tions to be offloaded [35, 50]. (3) Studies of mobility management
that consider the migration of allocated virtual machines to ensure
quality of service for roaming devices [37, 46].

Our study differs substantially in terms of its setting and goals.
First, our edge based querying does not involve migration of com-
puting tasks—the sketching and quantile finding are fixed at edge
nodes and user clients. Second, our study focuses on tuning pro-
cessed data fractions on edge nodes, not on computation placement.
Third, we do not explicitly consider the impact of a query client’s
mobility on system performance. Finally, our optimization encom-
passes result quality guarantees.

7 CONCLUSION AND FUTUREWORK
We study efficient and error-bounded SQM by allocating and control-
ling GK sketches in an edge computing platform. Given a query, we
optimize the processed data fractions of its allocated edge sketches
to achieve the lowest query latency while bounding result errors.
We decompose a query into shareable cell-based subqueries to
enable scalable processing of concurrent queries. We determine
optimal error bounds for cell-based subqueries, which ensure the op-
timal latencies of concurrent queries with error bounds.We conduct
experiments using synthetic and real mobility data in a simulated
IoT-based edge computing environment. The results indicate that
our proposed solution for SQM queries advances the state of the art
according to key performance metrics.

In future work, it is of interest to consider tuning the approxima-
tion errors of sketches rather than their data fractions. It is relevant
to employ proactive failover strategies to achieve resilience against
edge node failure, thus improving prospects for real-world deploy-
ment. Last, it is of interest to enable disregarding incomplete sketch
results to improve latency while maintaining query error bounds.

ACKNOWLEDGMENTS
This work was supported by EU MSCA No. 882232, NSFC No.
61802163, and DIREC, funded by Innovation Fund Denmark. The
authors thank Xinle Jiang for preprocessing GeoLife data. Bo Tang

is the corresponding author, and he is affiliated with the Research
Institute of Trustworthy Autonomous Systems, SUSTech.

REFERENCES
[1] 2019. 5G Xn interface protocol architecture. http://4g5gworld.com/blog/5g-xn-

interface-protocol-architecture. (Accessed Jan 2022).
[2] 2020. Generic IoT data simulator. https://github.com/IBA-Group-IT/IoT-data-

simulator. (Accessed Sep 2021).
[3] 2021. 5G - Wikipedia. https://en.wikipedia.org/wiki/5G. (Accessed Jun 2021).
[4] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei

Wei, and Ke Yi. 2013. Mergeable summaries. ACM Trans. Database Syst. 38, 4
(2013), 1–28.

[5] Atakan Aral and Ivona Brandić. 2020. Learning spatiotemporal failure dependen-
cies for resilient edge computing services. IEEE Trans. Parallel Distrib. Syst. 32, 7
(2020), 1578–1590.

[6] Arvind Arasu and Gurmeet Singh Manku. 2004. Approximate counts and quan-
tiles over sliding windows. In PODS. 286–296.

[7] Balazs Bertenyi, Richard Burbidge, Gino Masini, Sasha Sirotkin, and Yin Gao.
2018. NG radio access network (NG-RAN). J. ICT Stand 6, 1 (2018), 59–76.

[8] Zhipeng Cai and Tuo Shi. 2020. Distributed query processing in the edge assisted
IoT data monitoring system. IEEE Internet Things J. (2020).

[9] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. 2015. Efficient multi-user
computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw.
24, 5 (2015), 2795–2808.

[10] Zhiwei Chen and Aoqian Zhang. 2020. A survey of approximate quantile compu-
tation on large-scale data. IEEE Access 8 (2020), 34585–34597.

[11] Graham Cormode. 2017. Data sketching. Commun. ACM 60, 9 (2017), 48–55.
[12] Graham Cormode, Minos Garofalakis, Shan Muthukrishnan, and Rajeev Ras-

togi. 2005. Holistic aggregates in a networked world: Distributed tracking of
approximate quantiles. In SIGMOD. 25–36.

[13] Vincenzo De Maio and Ivona Brandic. 2018. First hop mobile offloading of dag
computations. In CCGRID. 83–92.

[14] Mayuresh Desai and Arati Phadke. 2017. Internet of Things based vehicle moni-
toring system. In WOCN. 1–3.

[15] Maged Elkashlan, Trung Q Duong, and Hsiao-Hwa Chen. 2014. Millimeter-wave
communications for 5G: Fundamentals. IEEE Commun. Mag. 52, 9 (2014), 52–54.

[16] Michael B Greenwald and Sanjeev Khanna. 2001. Space-efficient online compu-
tation of quantile summaries. SIGMOD Rec. 30, 2 (2001), 58–66.

[17] Michael B Greenwald and Sanjeev Khanna. 2004. Power-conserving computation
of order-statistics over sensor networks. In PODS. 275–285.

[18] Zaobo He, Zhipeng Cai, Siyao Cheng, and Xiaoming Wang. 2014. Approximate
aggregation for tracking quantiles in wireless sensor networks. In COCOA. 161–
172.

[19] Huawei Huang and Song Guo. 2019. Proactive failure recovery for NFV in
distributed edge computing. IEEE Commun. Mag. 57, 5 (2019), 131–137.

[20] Zengfeng Huang, Lu Wang, Ke Yi, and Yunhao Liu. 2011. Sampling based algo-
rithms for quantile computation in sensor networks. In SIGMOD. 745–756.

[21] Devki Nandan Jha, Khaled Alwasel, Areeb Alshoshan, Xianghua Huang,
Ranesh Kumar Naha, Sudheer Kumar Battula, Saurabh Garg, Deepak Puthal,
Philip James, Albert Zomaya, et al. 2020. IoTSim-Edge: A simulation framework
for modeling the behavior of Internet of Things and edge computing environ-
ments. Software: Practice and Experience 50, 6 (2020), 844–867.

[22] Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approximation
in streams. In FOCS. 71–78.

[23] Byung-Gook Kim, Yu Zhang, Mihaela Van Der Schaar, and Jang-Won Lee. 2015.
Dynamic pricing and energy consumption scheduling with reinforcement learn-
ing. IEEE Trans Smart Grid 7, 5 (2015), 2187–2198.

[24] Chuan-Chi Lai, Tien-Chun Wang, Chuan-Ming Liu, and Li-Chun Wang. 2019.
Probabilistic top-k dominating query monitoring over multiple uncertain IoT
data streams in edge computing environments. IEEE Internet Things J. 6, 5 (2019),
8563–8576.

[25] Jing Li, Weifa Liang, Meitian Huang, and Xiahua Jia. 2019. Providing reliability-
aware virtualized network function services for mobile edge computing. In ICDCS.
732–741.

[26] Xiaocui Li, Zhangbing Zhou, Junqi Guo, ShangguangWang, and Junsheng Zhang.
2019. Aggregated multi-attribute query processing in edge computing for indus-
trial IoT applications. Comput. Netw. 151 (2019), 114–123.

[27] Xuemin Lin, Hongjun Lu, Jian Xu, and Jeffrey Xu Yu. 2004. Continuously main-
taining quantile summaries of the most recent N elements over a data stream. In
ICDE. 362–373.

[28] Xingpo Ma, Junbin Liang, Sijia Yang, Yanling Li, Yin Li, Wenpeng Ma, and Tian
Wang. 2019. SLS-STQ: A novel scheme for securing spatial-temporal top-k queries
in TWSNs-Based edge computing systems. IEEE Internet Things J. 6, 6 (2019),
10093–10104.

[29] Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on
architecture and computation offloading. IEEE Commun. Surv. 19, 3 (2017), 1628–
1656.

[30] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1998. Ap-
proximate medians and other quantiles in one pass and with limited memory. In
SIGMOD. 426–435.

[31] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1999. Random
sampling techniques for space efficient online computation of order statistics of
large datasets. SIGMOD Rec. 28, 2 (1999), 251–262.

[32] Yuyi Mao, Jun Zhang, SH Song, and Khaled Ben Letaief. 2016. Power-delay
tradeoff in multi-user mobile-edge computing systems. In GLOBECOM. 1–6.

[33] Johannes Niedermayer, Mario A Nascimento, Matthias Renz, Peer Kröger, Khaled
Ammar, and Hans-Peter Kriegel. 2013. Cost-based quantile query processing in
wireless sensor networks. In MDM, Vol. 1. 237–246.

[34] Johannes Niedermayer, Mario A Nascimento, Matthias Renz, Peer Kröger, and
Hans-Peter Kriegel. 2014. Continuous quantile query processing in wireless
Sensor networks. In EDBT. 247–258.

[35] Jessica Oueis, Emilio Calvanese Strinati, Stefania Sardellitti, and Sergio Bar-
barossa. 2015. Small cell clustering for efficient distributed fog computing: A
multi-user case. In VTC2015-Fall. 1–5.

[36] Hui Peng, Xiaoying Zhang, Hong Chen, Yao Wu, Juru Zeng, and Deying Li.
2015. Enable privacy preservation for k-NN query in two-tiered wireless sensor
networks. In ICC. 6289–6294.

[37] Jan Plachy, Zdenek Becvar, and Emilio Calvanese Strinati. 2016. Dynamic resource
allocation exploiting mobility prediction in mobile edge computing. In PIMRC.
1–6.

[38] Deepa Rajendra Sangolli, Nagthej Manangi Ravindrarao, Priyanka Chidambar
Patil, Thrishna Palissery, and Kaikai Liu. 2019. Enabling high availability edge
computing platform. In MobileCloud. 85–92.

[39] Bo Sheng and Qun Li. 2008. Verifiable privacy-preserving range query in two-
tiered sensor networks. In INFOCOM. 46–50.

[40] Jing Shi, Rui Zhang, and Yanchao Zhang. 2009. Secure range queries in tiered
sensor networks. In INFOCOM. 945–953.

[41] Jing Shi, Rui Zhang, and Yanchao Zhang. 2010. A spatiotemporal approach for
secure range queries in tiered sensor networks. IEEE Trans. Wirel. Commun. 10,
1 (2010), 264–273.

[42] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE Internet Things J. 3, 5 (2016), 637–646.

[43] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. 2004. Medians and beyond: New aggregation techniques for sensor networks.
In SenSys. 239–249.

[44] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. 2018. EdgeCloudSim: An
environment for performance evaluation of edge computing systems. Trans.
Emerg. Telecommun 29, 11 (2018), e3493.

[45] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. 2019. Fuzzy workload or-
chestration for edge computing. IEEE Trans. Netw. Serv. Manag. 16, 2 (2019),
769–782.

[46] Tarik Taleb and Adlen Ksentini. 2013. An analytical model for follow me cloud.
In GLOBECOM. 1291–1296.

[47] Yufei Tao, George Kollios, Jeffrey Considine, Feifei Li, and Dimitris Papadias.
2004. Spatio-temporal aggregation using sketches. In ICDE. 214–225.

[48] Daniel Ting, Jonathan Malkin, and Lee Rhodes. 2020. Data sketching for real
time analytics: Theory and practice. In KDD. 3567–3568.

[49] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. 2021. GPU-
aided edge computing for processing the k nearest-neighbor query on SSD-
resident data. Internet of Things 15 (2021), 100428.

[50] Michal Vondra and Zdenek Becvar. 2014. QoS-ensuring distribution of computa-
tion load among cloud-enabled small cells. In CloudNet. 197–203.

[51] Runhua Xu, Balaji Palanisamy, and James Joshi. 2018. QueryGuard: Privacy-
preserving latency-aware query optimization for edge computing. In Trust-
Com/BigDataSE. 1097–1106.

[52] Yonglei Yao, Naixue Xiong, Jong Hyuk Park, Li Ma, and Jingfa Liu. 2013. Privacy-
preserving max/min query in two-tiered wireless sensor networks. Comput.
Math. Appl. 65, 9 (2013), 1318–1325.

[53] Changsheng You and Kaibin Huang. 2016. Multiuser resource allocation for
mobile-edge computation offloading. In GLOBECOM. 1–6.

[54] Haifeng Yu. 2011. Secure and highly-available aggregation queries in large-scale
sensor networks via set sampling. Distrib. Comput. 23, 5 (2011), 373–394.

[55] Qingchen Zhang, Man Lin, Laurence T Yang, Zhikui Chen, Samee U Khan, and
Peng Li. 2018. A double deep Q-learning model for energy-efficient edge sched-
uling. IEEE Trans. Serv. Comput. 12, 5 (2018), 739–749.

[56] Rui Zhang, Jing Shi, Yunzhong Liu, and Yanchao Zhang. 2010. Verifiable fine-
grained top-k queries in tiered sensor networks. In INFOCOM. 1–9.

[57] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. 2021. KLL±approximate quantile sketches over dynamic datasets. PVLDB
14, 7 (2021), 1215–1227.

[58] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social
networking service among user, location and trajectory. IEEE Data Eng. Bull. 33,
2 (2010), 32–39.

http://4g5gworld.com/blog/5g-xn-interface-protocol-architecture
http://4g5gworld.com/blog/5g-xn-interface-protocol-architecture
https://github.com/IBA-Group-IT/IoT-data-simulator
https://github.com/IBA-Group-IT/IoT-data-simulator
https://en.wikipedia.org/wiki/5G

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quantile Computation and Data Sketches
	2.2 Problem Definition
	2.3 Processing Framework

	3 Sketch Optimization For a Query
	3.1 Query Error Analysis
	3.2 Query Latency Analysis
	3.3 Data Fraction Estimation for Edge Sketches

	4 Concurrent Query Processing
	4.1 Grid-based Query Decomposition
	4.2 Error Bounds of Cell-based Subqueries

	5 Experimental Studies
	5.1 Experimental Settings
	5.2 Studies on Individual Query Processing
	5.3 Studies on Concurrent Query Processing
	5.4 Studies on Real Mobility Data

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

