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1. Introduction
y People spend 87% of their daily time indoors. It is useful to measure the

indoor densities and find the dense regions.
y Application in flow and security control: authority in large airport Ù find most crowded

regions Ù open more fast tracks Ù help passengers timely.

y Multiple challenges in measuring indoor densities.
y Complex indoor topology enables as well as constrains indoor object movements.

y Using counting sensors: extra hardware investment, rigorous sensor deployment, no
support for user-defined indoor regions.

y Using indoor positioning data: Lower sampling issue and discrete location reports that leave
considerable uncertainty at a particular time.

y A low-cost approach using online uncertain indoor positioning data.
y We design an indoor density definition amenable to indoor object location uncertainty, and

formulate the problem of finding top-k indoor dense regions.

y We analyze the indoor location uncertainty, derive bounds of indoor densities, and introduce
distance decaying effect into indoor density computing.

y By making use of the uncertainty analysis outcomes, we design efficient algorithms to
search for the current top-k indoor dense regions.

2. Problem Formulation

y Online Indoor Positioning Table. Only the latest positioning
information (o, loc, t) is maintained, and there is no more recent
information available.

y Indoor Uncertainty Region. UR I(loc, tc, tl) describes the
indoor portions where the object can reach at the current time tc
under the maximum speed constraint Vmax.
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y Distance Decaying Object Presence. Given an indoor region r , an object o’s indoor
uncertainty region UR I(loc) with the distance decaying function Γ (a monotone nonincreasing

function with indoor distance δ), o’s presence in r is φΓ
r (o) =

∫
l∈(URI(loc)∩r)

Γ(distI(loc,l))dl∫
l∈URI(loc)

Γ(distI(loc,l))dl
.

y Density. Given a set O of indoor objects, an indoor region r ’s density is τO(r) =
∑

o∈O φ
Γ
r (o)

Area(r) .

y Top-k Indoor Dense Region Search. Given a set O of indoor objects, the top-k indoor
dense region search returns k densest indoor regions in a k -subset Qk ⊆ Q such that ∀r ∈
Qk ,∀r ′ ∈ Q \ Qk , τO(r) ≥ τO(r ′).

y Our problem setting allows users to customize semantic-dependent query regions according
to their practical needs.

3. Summary of Our Approach

It’s complex to compute precise indoor densities. The discrete nature of indoor positioning makes
the object location already out-of-date at the search time.

3.1 Bounds of Indoor Density — concentrate on relevant objects only.

y A region r where there was no object at a past time tp can contain objects at time tc. However, they can only
come from a buffer region that contains r , i.e., a δ-Minkowski region where δ = Vmax · (tc − tp).

y Considering indoor topology, we define r ’s indoor buffer region ΘBI (r) as intersection of r ’s buffer region
and the indoor parts from where one can reach r within time interval [tp, tc].

y Oppositely, we define r ’s indoor core region ΘCI (r) as a reduced region of r from where one cannot leave
r within [tp, tc].
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y Indoor Density Bounds. COUNT(ΘCI (r))

Area(r) ≤ τO(r) ≤
COUNT(ΘBI (r))

Area(r) , where function COUNT(r) obtains the
number of objects whose last reported location is contained by region r .

y Temporal Loose Bounds. For two past timestamps ti and tp, if ti ≤ tp we have COUNT(ΘCI (r ,tc,ti))

Area(r) ≤

COUNT(ΘCI (r ,tc,tp))

Area(r) ≤ τO(r) ≤
COUNT(ΘBI (r ,tc,tp))

Area(r) ≤
COUNT(ΘBI (r ,tc,ti))

Area(r) .

3.2 Top-k Search Algorithms based on derived density bounds.

y The overall framework uses a max-heap to control the processing order of query regions.
y It uses the oldest timestamp in OIPT to derive ΘBI (r) and ΘCI (r) for each r (c.f. Temporal Loose Bounds).

y It overestimates (underestimates) r ’s density by counting all objects whose last reported location is in ΘBI (r)
(ΘCI (r)).

y Only regions whose upper bound density is no less than the current k -th highest lower bound density
should be further processed.

y The framework calls a top-k search algorithm that gives priority to the regions with higher
overestimated density values.
y One-pass Search gets the overestimated object set set> and underestimated object set set⊥, and

continues to update r ’s object load by only going through the variable part in set> \ set⊥.

y Improved Search decomposes the one-pass load computing into two passes, it counts the objects
whose uncertainty region is contained by and overlaps r , respectively.

y Between the two passes, a tighter upper bound τO(r) ≤
OverCount(r)

Area(r) ≤
COUNT(ΘBI (r))

Area(r) is utilized, where
function OverCount(r) obtains the number of objects whose uncertainty region only overlaps with region r .

y In a two-pass way, we expect to avoid part of expensive counting for more uncertain objects as the
tighter overestimated density may be lower than other query regions’ final densities that are either already
computed or to be computed soon.

4. Experimental Results

4.1 Efficiency studies using a large synthetic dataset.

y Alternative indoor dense region search methods.
y DC directly counts the objects contained by r and thus has the lowest time

and memory cost.

y Nested-loop variants (NL*) sum up object presences to r ’s density based
on our definition. NLRegion (NLObject)’s outer-loop is oriented to regions
(objects); NLwgbr and NLwibr use general buffer region and indoor buffer
region to reduce the search space, respectively.

y Efficiency comparison in default parameter setting.
y The pruning ratio indicates that the bounds of indoor density in our methods

are very effective in pruning objects.

y TopkIDRsImprd has a higher pruning capability than TopkIDRs1Pass, as it
can early prune some query regions whose final density is already lower
than other regions’ tighter overestimated bounds.

Algorithms Running time (ms.) Pruning ratio Memory cost (MB.)
TopKIDRs1Pass 399.7 81.56% 147.8
TopKIDRsImprvd 365.7 85.02% 156.1

DC 68.5 - 2.2
NLRegion 148386.2 0 342.5
NLObject 2248.1 0 321.3
NLwibr 1082.2 60.74% 68.6
NLwgbr 1597.7 34.85% 51.2

4.2 Effectiveness studies using a real university dataset.

y We compare our uncertainty model based method (UM) to DC
in terms of Kendall coefficient and recall.
y Kendall coefficient τ is a rank correlation measure between the ranking

of the top-k search result and the top-k ground truth. It varies within [−1, 1].

y The effect of changing |Q | and the query time interval ∆t .
y UM always outperforms DC. UM’s two measures decrease when more

query regions are involved. Its τ is close to 0.7 when using all query regions.

y An object’s uncertainty region becomes larger when ∆t increases, which
reduces the accuracy of indoor densities computed. Nevertheless, UM’s
recall is still higher than 0.78, showing that our method is very effective in
finding correct results even the OIPT contains relatively old location reports.
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